ksatzke's picture
Update app.py
9cc9a99 verified
raw
history blame
21.5 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import logging
from typing import List, Dict
import gc
import os
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Set environment variables for memory optimization
os.environ['TRANSFORMERS_CACHE'] = '/home/user/.cache/huggingface/hub'
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
class HealthAssistant:
def __init__(self):
self.model_id = "microsoft/Phi-2" # Using smaller Phi-2 model
self.model = None
self.tokenizer = None
self.pipe = None
self.metrics = []
self.medications = []
self.device = "cpu"
self.is_model_loaded = False
self.max_history_length = 2
def initialize_model(self):
try:
if self.is_model_loaded:
return True
logger.info(f"Loading model: {self.model_id}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id,
trust_remote_code=True,
model_max_length=256,
padding_side="left"
)
logger.info("Tokenizer loaded")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
torch_dtype=torch.float32,
trust_remote_code=True,
device_map=None,
low_cpu_mem_usage=True
).to(self.device)
gc.collect()
self.pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=self.device,
model_kwargs={"low_cpu_mem_usage": True}
)
self.is_model_loaded = True
logger.info("Model initialized successfully")
return True
except Exception as e:
logger.error(f"Error in model initialization: {str(e)}")
raise
def unload_model(self):
if hasattr(self, 'model') and self.model is not None:
del self.model
self.model = None
if hasattr(self, 'pipe') and self.pipe is not None:
del self.pipe
self.pipe = None
if hasattr(self, 'tokenizer') and self.tokenizer is not None:
del self.tokenizer
self.tokenizer = None
self.is_model_loaded = False
gc.collect()
logger.info("Model unloaded successfully")
def generate_response(self, message: str, history: List = None) -> str:
try:
if not self.is_model_loaded:
self.initialize_model()
message = message[:200] # Truncate long messages
prompt = self._prepare_prompt(message, history[-self.max_history_length:] if history else None)
generation_args = {
"max_new_tokens": 200,
"return_full_text": False,
"temperature": 0.7,
"do_sample": True,
"top_k": 50,
"top_p": 0.9,
"repetition_penalty": 1.1,
"num_return_sequences": 1,
"batch_size": 1
}
output = self.pipe(prompt, **generation_args)
response = output[0]['generated_text']
gc.collect()
return response.strip()
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
return "I apologize, but I encountered an error. Please try again."
def _prepare_prompt(self, message: str, history: List = None) -> str:
prompt_parts = [
"Medical AI assistant. Be professional, include disclaimers.",
self._get_health_context()
]
if history:
for h in history:
if isinstance(h, dict): # New message format
if h['role'] == 'user':
prompt_parts.append(f"Human: {h['content'][:100]}")
else:
prompt_parts.append(f"Assistant: {h['content'][:100]}")
else: # Old format (tuple)
prompt_parts.extend([
f"Human: {h[0][:100]}",
f"Assistant: {h[1][:100]}"
])
prompt_parts.extend([
f"Human: {message}",
"Assistant:"
])
return "\n".join(prompt_parts)
def _get_health_context(self) -> str:
if not self.metrics and not self.medications:
return "No health data"
context = []
if self.metrics:
latest = self.metrics[-1]
context.append(f"Metrics: W:{latest['Weight']}kg S:{latest['Steps']} Sl:{latest['Sleep']}h")
if self.medications:
meds = [f"{m['Medication']}({m['Dosage']}@{m['Time']})" for m in self.medications[-2:]]
context.append("Meds: " + ", ".join(meds))
return " | ".join(context)
def add_metrics(self, weight: float, steps: int, sleep: float) -> bool:
try:
if len(self.metrics) >= 5:
self.metrics.pop(0)
self.metrics.append({
'Weight': weight,
'Steps': steps,
'Sleep': sleep
})
return True
except Exception as e:
logger.error(f"Error adding metrics: {e}")
return False
def add_medication(self, name: str, dosage: str, time: str, notes: str = "") -> bool:
try:
if len(self.medications) >= 5:
self.medications.pop(0)
self.medications.append({
'Medication': name,
'Dosage': dosage,
'Time': time,
'Notes': notes
})
return True
except Exception as e:
logger.error(f"Error adding medication: {e}")
return False
class GradioInterface:
def __init__(self):
try:
logger.info("Initializing Health Assistant...")
self.assistant = HealthAssistant()
logger.info("Health Assistant initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Health Assistant: {e}")
raise
def chat_response(self, message: str, history: List) -> tuple:
if not message.strip():
return "", history
try:
response = self.assistant.generate_response(message, history)
# Convert to new message format
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
if len(history) % 3 == 0:
self.assistant.unload_model()
return "", history
except Exception as e:
logger.error(f"Error in chat response: {e}")
return "", history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "I apologize, but I encountered an error. Please try again."}
]
def add_health_metrics(self, weight: float, steps: int, sleep: float) -> str:
if not all([weight is not None, steps is not None, sleep is not None]):
return "⚠️ Please fill in all metrics."
if weight <= 0 or steps < 0 or sleep < 0:
return "⚠️ Please enter valid positive numbers."
if self.assistant.add_metrics(weight, steps, sleep):
return f"""✅ Health metrics saved successfully!
• Weight: {weight} kg
• Steps: {steps}
• Sleep: {sleep} hours"""
return "❌ Error saving metrics."
def add_medication_info(self, name: str, dosage: str, time: str, notes: str) -> str:
if not all([name, dosage, time]):
return "⚠️ Please fill in all required fields."
if self.assistant.add_medication(name, dosage, time, notes):
return f"""✅ Medication added successfully!
• Medication: {name}
• Dosage: {dosage}
• Time: {time}
• Notes: {notes if notes else 'None'}"""
return "❌ Error adding medication."
def create_interface(self):
with gr.Blocks(title="Medical Health Assistant") as demo:
gr.Markdown("""
# 🏥 Medical Health Assistant
This AI assistant provides general health information and guidance.
""")
with gr.Tabs():
with gr.Tab("💬 Medical Consultation"):
chatbot = gr.Chatbot(
value=[],
height=400,
label=False,
type="messages" # Using new message format
)
with gr.Row():
msg = gr.Textbox(
placeholder="Ask your health question...",
lines=1,
label=False,
scale=9
)
send_btn = gr.Button("Send", scale=1)
clear_btn = gr.Button("Clear Chat")
with gr.Tab("📊 Health Metrics"):
gr.Markdown("### Track Your Health Metrics")
with gr.Row():
weight_input = gr.Number(
label="Weight (kg)",
minimum=0,
maximum=500
)
steps_input = gr.Number(
label="Steps",
minimum=0,
maximum=100000
)
sleep_input = gr.Number(
label="Hours Slept",
minimum=0,
maximum=24
)
metrics_btn = gr.Button("Save Metrics")
metrics_status = gr.Markdown()
with gr.Tab("💊 Medication Manager"):
gr.Markdown("### Track Your Medications")
med_name = gr.Textbox(
label="Medication Name",
placeholder="Enter medication name"
)
with gr.Row():
med_dosage = gr.Textbox(
label="Dosage",
placeholder="e.g., 500mg"
)
med_time = gr.Textbox(
label="Time",
placeholder="e.g., 9:00 AM"
)
med_notes = gr.Textbox(
label="Notes (optional)",
placeholder="Additional instructions or notes"
)
med_btn = gr.Button("Add Medication")
med_status = gr.Markdown()
msg.submit(self.chat_response, [msg, chatbot], [msg, chatbot])
send_btn.click(self.chat_response, [msg, chatbot], [msg, chatbot])
clear_btn.click(lambda: [], None, chatbot)
metrics_btn.click(
self.add_health_metrics,
inputs=[weight_input, steps_input, sleep_input],
outputs=[metrics_status]
)
med_btn.click(
self.add_medication_info,
inputs=[med_name, med_dosage, med_time, med_notes],
outputs=[med_status]
)
gr.Markdown("""
### ⚠️ Medical Disclaimer
This AI assistant provides general health information only. Not a replacement for professional medical advice.
Always consult healthcare professionals for medical decisions.
""")
demo.queue(max_size=5)
return demo
from pathlib import Path
import io
import json
import math
import statistics
import sys
import time
from datasets import concatenate_datasets, Dataset
from datasets import load_dataset
from huggingface_hub import hf_hub_url
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from evaluate import load
# 1. record each file name included
# 1.1 read different file formats depending on parameters (i.e., filetype)
# 2. determine column types and report how many rows for each type (format check)
# (in a well-formatted dataset, each column should only have one type)
# 3. report on the null values
# 4. for certain column types, report statistics
# 4.1 uniqueness: if all rows are of a small number of <string> values, treat the column as 'categorical' < 10.
# 4.2 strings: length ranges
# 4.3 lists: length ranges
# 4.3 int/float/double: their percentiles, min, max, mean
CELL_TYPES_LENGTH = ["<class 'str'>", "<class 'list'>"]
CELL_TYPES_NUMERIC = ["<class 'int'>", "<class 'float'>"]
PERCENTILES = [1, 5, 10, 25, 50, 100, 250, 500, 750, 900, 950, 975, 990, 995, 999]
def read_data(all_files, filetype):
df = None
func_name = ""
if filetype in ["parquet", "csv", "json"]:
if filetype == "parquet":
func_name = pd.read_parquet
elif filetype == "csv":
func_name = pd.read_csv
elif filetype == "json":
func_name = pd.read_json
df = pd.concat(func_name(f) for f in all_files)
elif filetype == "arrow":
ds = concatenate_datasets([Dataset.from_file(str(fname)) for fname in all_files])
df = pd.DataFrame(data=ds)
elif filetype == "jsonl":
func_name = pd.read_json
all_lines = []
for fname in all_files:
with open(fname, "r") as f:
all_lines.extend(f.readlines())
df = pd.concat([pd.DataFrame.from_dict([json.loads(line)]) for line in all_lines])
return df
def compute_cell_length_ranges(cell_lengths, cell_unique_string_values):
cell_length_ranges = {}
cell_length_ranges = {}
string_categorical = {}
# this is probably a 'categorical' (i.e., 'classes' in HuggingFace) value
# with few unique items (need to check that while reading the cell),
# so no need to treat it as a normal string
if len(cell_unique_string_values) > 0 and len(cell_unique_string_values) <= 10:
string_categorical = str(len(cell_unique_string_values)) + " class(es)"
elif cell_lengths:
cell_lengths = sorted(cell_lengths)
min_val = cell_lengths[0]
max_val = cell_lengths[-1]
distance = math.ceil((max_val - min_val) / 10.0)
ranges = []
if min_val != max_val:
for j in range(min_val, max_val, distance):
ranges.append(j)
for j in range(len(ranges)-1):
cell_length_ranges[str(ranges[j]) + "-" + str(ranges[j+1])] = 0
ranges.append(max_val)
j = 1
c = 0
for k in cell_lengths:
if j == len(ranges):
c += 1
elif k < ranges[j]:
c += 1
else:
cell_length_ranges[str(ranges[j-1]) + "-" + str(ranges[j])] = c
j += 1
c = 1
cell_length_ranges[str(ranges[j-1]) + "-" + str(max_val)] = c
else:
ranges = [min_val]
c = 0
for k in cell_lengths:
c += 1
cell_length_ranges[str(min_val)] = c
return cell_length_ranges, string_categorical
def _compute_percentiles(values, percentiles=PERCENTILES):
result = {}
quantiles = statistics.quantiles(values, n=max(PERCENTILES)+1, method='inclusive')
for p in percentiles:
result[p/10] = quantiles[p-1]
return result
def compute_cell_value_statistics(cell_values):
stats = {}
if cell_values:
cell_values = sorted(cell_values)
stats["min"] = cell_values[0]
stats["max"] = cell_values[-1]
stats["mean"] = statistics.mean(cell_values)
stats["stdev"] = statistics.stdev(cell_values)
stats["variance"] = statistics.variance(cell_values)
stats["percentiles"] = _compute_percentiles(cell_values)
return stats
def check_null(cell, cell_type):
if cell_type == "<class 'float'>":
if math.isnan(cell):
return True
elif cell is None:
return True
return False
def compute_property(data_path, glob, filetype):
output = {}
data_dir = Path(data_path)
filenames = []
all_files = list(data_dir.glob(glob))
for f in all_files:
print(str(f))
base_fname = str(f)[len(str(data_path)):]
if not data_path.endswith("/"):
base_fname = base_fname[1:]
filenames.append(base_fname)
output["filenames"] = filenames
df = read_data(all_files, filetype)
column_info = {}
for col_name in df.columns:
if col_name not in column_info:
column_info[col_name] = {}
cell_types = {}
cell_lengths = {}
cell_unique_string_values = {}
cell_values = {}
null_count = 0
col_values = df[col_name].to_list()
for cell in col_values:
# for index, row in df.iterrows():
# cell = row[col_name]
cell_type = str(type(cell))
cell_type = str(type(cell))
# print(cell, cell_type)
if check_null(cell, cell_type):
null_count += 1
continue
if cell_type not in cell_types:
cell_types[cell_type] = 1
else:
cell_types[cell_type] += 1
if cell_type in CELL_TYPES_LENGTH:
cell_length = len(cell)
if cell_type not in cell_lengths:
cell_lengths[cell_type] = []
cell_lengths[cell_type].append(cell_length)
if cell_type == "<class 'str'>" and cell not in cell_unique_string_values:
cell_unique_string_values[cell] = True
elif cell_type in CELL_TYPES_NUMERIC:
if cell_type not in cell_values:
cell_values[cell_type] = []
cell_values[cell_type].append(cell)
else:
print(cell_type)
clrs = {}
ccs = {}
for cell_type in CELL_TYPES_LENGTH:
if cell_type in cell_lengths:
clr, cc = compute_cell_length_ranges(cell_lengths[cell_type], cell_unique_string_values)
clrs[cell_type] = clr
ccs[cell_type] = cc
css = {}
for cell_type in CELL_TYPES_NUMERIC:
if cell_type in cell_values:
cell_stats = compute_cell_value_statistics(cell_values[cell_type])
css[cell_type] = cell_stats
column_info[col_name]["cell_types"] = cell_types
column_info[col_name]["cell_length_ranges"] = clrs
column_info[col_name]["cell_categories"] = ccs
column_info[col_name]["cell_stats"] = css
column_info[col_name]["cell_missing"] = null_count
output["column_info"] = column_info
output["number_of_items"] = len(df)
output["timestamp"] = time.time()
return output
def preprocess_function(examples):
return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels)
def compute_model_card_evaluation_results(tokenizer, model_checkpoint, raw_datasets, metric):
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
batch_size = 16
args = TrainingArguments(
"test-glue",
evaluation_strategy = "epoch",
learning_rate=5e-5,
seed=42,
lr_scheduler_type="linear",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=3,
weight_decay=0.01,
load_best_model_at_end=False,
metric_for_best_model="accuracy",
report_to="none"
)
trainer = Trainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
result = trainer.evaluate()
return result
def main():
try:
interface = GradioInterface()
demo = interface.create_interface()
demo.launch(
server_name="0.0.0.0",
show_error=True,
share=True
)
except Exception as e:
logger.error(f"Error starting application: {e}")
raise
if __name__ == "__main__":
main()