File size: 7,454 Bytes
10e9b7d
 
eccf8e4
3c4371f
555572d
 
 
 
 
747cde9
555572d
6210d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e80aab9
3db6293
e80aab9
747cde9
555572d
 
 
 
 
 
4ee4399
555572d
 
 
 
 
747cde9
 
4ee4399
747cde9
 
 
 
 
 
 
 
 
 
 
 
 
545d067
c976bf6
 
 
 
 
 
 
 
 
 
747cde9
c6929d8
3c4371f
555572d
4ee4399
 
 
 
 
747cde9
4ee4399
3c4371f
4c8870a
555572d
4c8870a
 
 
 
555572d
31243f4
555572d
31243f4
4ee4399
 
31243f4
3c4371f
555572d
 
eccf8e4
555572d
 
 
7d65c66
4ee4399
 
555572d
e80aab9
555572d
 
 
 
 
 
31243f4
555572d
31243f4
4ee4399
747cde9
555572d
 
 
 
 
 
 
 
 
 
 
e80aab9
555572d
 
 
 
 
 
 
4ee4399
e80aab9
7d65c66
4ee4399
 
555572d
 
e80aab9
4ee4399
2dac529
555572d
747cde9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555572d
0ee0419
555572d
 
 
 
e80aab9
555572d
 
 
 
 
747cde9
 
 
 
 
 
 
 
4c8870a
747cde9
 
 
 
 
e80aab9
 
555572d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import (
    CodeAgent,
    DuckDuckGoSearchTool,
    OpenAIServerModel,
)
import traceback  # Import traceback for detailed error logging

import subprocess

class PythonREPLTool:
    name = "python_repl"
    description = "Runs Python code and returns the output or error."


    def __init__(self, timeout=10):
        self.timeout = timeout

    def run(self, code: str) -> str:

        try:
            result = subprocess.run(
                ["python3", "-c", code],
                timeout=self.timeout,
            )
            if result.returncode == 0:
                return result.stdout.strip()
            else:
                return f"Error:\n{result.stderr.strip()}"
        except subprocess.TimeoutExpired:
            return "Execution timed out."

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"


# --- Agent Definition ---
class GaiaAgent:
    def __init__(self, openai_key: str):
        self.openai_key = openai_key
        # 1) Initialize the LLM-backed model
        self.model = OpenAIServerModel(
            model_id="gpt-4",  # or "gpt-3.5-turbo" if you prefer
            api_key=self.openai_key,
            system_prompt=(
                "You are a meticulous AI agent. "
                "Always think in Python code using the available tools.  "
                "Never answer without executing or checking with a tool.  "
                "Use DuckDuckGoSearchTool for factual lookups. "
                "Use PythonREPLTool for calculations, string manipulation, and logical deductions. "
                "Respond with the final answer only. Do not include any extra explanation. "
                "Here are some examples of how to use the tools:"
                "# Example 1: Calculate the square root of 16\n"
                "# ```python\n"
                "# print(16**0.5)\n"
                "# ```\n"
                "# Example 2: Search for the capital of France\n"
                "# ```python\n"
                "# print(DuckDuckGoSearchTool(query='capital of France'))\n"
                "# ```\n"
                "# Example 3: Reverse a string\n"
                "# ```python\n"
                "# print('hello'[::-1])\n"
                "# ```\n"
              )
        )
        # 2) Define the tools
        self.search_tool = DuckDuckGoSearchTool()
        self.python_tool = PythonREPLTool(timeout=10)  # Initialize PythonREPLTool
        # 3) Create the CodeAgent
        self.agent = CodeAgent(
            model=self.model,
            tools=[self.search_tool, self.python_tool],
            # Encourage the agent to think step-by-step in code
            max_steps=20
            ),
        

    def __call__(self, question: str) -> str:
        try:
            return self.agent.run(question)
        except Exception as e:
            error_message = f"Agent execution failed: {e}\n{traceback.format_exc()}"
            print(error_message)  # Log the error for debugging
            return "ERROR: Agent failed to answer."  # Return a string, not an exception


def run_and_submit_all(openai_key: str):
    # --- Login & Setup ---
    # if not profile:
    #     return "Please log in to Hugging Face to submit your score.", None
    # username = profile.username.strip()
    username = "anonymous"
    # 1) Instantiate our improved agent
    try:
        agent = GaiaAgent(openai_key)
    except Exception as e:
        error_message = f"Error initializing agent: {e}\n{traceback.format_exc()}"
        print(error_message)
        return f"Error initializing agent: {e}", None

    # 2) Fetch the GAIA questions
    questions_url = f"{DEFAULT_API_URL}/questions"
    try:
        resp = requests.get(questions_url, timeout=15)
        resp.raise_for_status()
        questions = resp.json()
    except Exception as e:
        error_message = f"Error fetching questions: {e}\n{traceback.format_exc()}"
        print(error_message)
        return f"Error fetching questions: {e}", None

    # 3) Run the agent on each question
    answers = []
    log = []
    for item in questions:
        tid = item["task_id"]
        q = item["question"]
        try:
            ans = agent(q)
        except Exception as e:
            error_message = f"Error processing question {tid}: {e}\n{traceback.format_exc()}"
            print(error_message)  # Print full traceback
            ans = f"ERROR: {e}"
        answers.append({"task_id": tid, "submitted_answer": ans})
        log.append({"Task ID": tid, "Question": q, "Answer": ans})

    # 4) Submit
    submit_url = f"{DEFAULT_API_URL}/submit"
    payload = {
        "username": username,
        "agent_code": f"https://huggingface.co/spaces/kshitijthakkar/GaiaAgent/tree/main",
        "answers": answers,
    }
    try:
        res = requests.post(submit_url, json=payload, timeout=60)
        res.raise_for_status()
        data = res.json()
        status = (
            f"✅ Submission Successful!\n"
            f"User: {data['username']}\n"
            f"Score: {data['score']}% ({data['correct_count']}/{data['total_attempted']})\n"
            f"Message: {data.get('message', '')}"
        )
    except Exception as e:
        error_message = f"Submission failed: {e}\n{traceback.format_exc()}"
        print(error_message)
        status = f"Submission failed: {e}"
    return status, pd.DataFrame(log)



# --- Gradio UI ---
def run_test_questions(profile, openai_key, test_questions):
    if not profile:
        return "Please log in to Hugging Face to run the test questions.", None

    try:
        agent = GaiaAgent(openai_key)
    except Exception as e:
        error_message = f"Error initializing agent: {e}\n{traceback.format_exc()}"
        print(error_message)
        return f"Error initializing agent: {e}", None

    log = []
    for q in test_questions:
        try:
            ans = agent(q)
        except Exception as e:
            error_message = f"Error processing test question: {e}\n{traceback.format_exc()}"
            print(error_message)
            ans = f"ERROR: {e}"
        log.append({"Question": q, "Answer": ans})
    return pd.DataFrame(log)



with gr.Blocks() as demo: # Corrected to use gr.Blocks()
    gr.Markdown("# GAIA Benchmark Runner")
    gr.Markdown(
        "1. Clone this Space and customize your agent logic.\n"
        "2. Log in below (to get your HF username).\n"
        "3. Enter your OpenAI key (if needed).\n"
        "4. Click to run and submit to the leaderboard."
    )
    login = gr.LoginButton()
    key_in = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...")
    run_btn = gr.Button("Run & Submit")
    out_status = gr.Textbox(label="Status", lines=4)
    out_table = gr.DataFrame(label="Questions & Answers")

    test_questions_input = gr.Textbox(
        label="Test Questions (comma-separated)",
        placeholder="What is the capital of France?, What is the square root of 25?",
    )
    run_test_btn = gr.Button("Run Test Questions")
    test_results_output = gr.DataFrame(label="Test Results")

    run_btn.click(fn=run_and_submit_all, inputs=[key_in], outputs=[out_status, out_table])
    run_test_btn.click(
        fn=run_test_questions,
        inputs=[login, key_in, test_questions_input],
        outputs=[test_results_output],
    )

if __name__ == "__main__":
    demo.launch(debug=True, share=False)