kylanoconnor's picture
Deploy PLONK with 32 samples and uncertainty estimation
2f1f8ac
import gradio as gr
import torch
import torchvision.transforms as transforms
from PIL import Image
import base64
import io
import os
import numpy as np
from pathlib import Path
from plonk.pipe import PlonkPipeline
import random
# Global variable to store the model
model = None
# Real PLONK predictions for production deployment
MOCK_MODE = False # Set to True for testing with mock data
def load_plonk_model():
"""
Load the PLONK model.
"""
global model
if model is None:
print("Loading PLONK_YFCC model...")
model = PlonkPipeline(model_path="nicolas-dufour/PLONK_YFCC")
print("Model loaded successfully!")
return model
def mock_plonk_prediction():
"""
Mock PLONK prediction - returns realistic coordinates
Used only when MOCK_MODE = True
"""
# Sample realistic coordinates from major cities/regions
mock_locations = [
(40.7128, -74.0060), # New York
(34.0522, -118.2437), # Los Angeles
(51.5074, -0.1278), # London
(48.8566, 2.3522), # Paris
(35.6762, 139.6503), # Tokyo
(37.7749, -122.4194), # San Francisco
(41.8781, -87.6298), # Chicago
(25.7617, -80.1918), # Miami
(45.5017, -73.5673), # Montreal
(52.5200, 13.4050), # Berlin
(-33.8688, 151.2093), # Sydney
(19.4326, -99.1332), # Mexico City
]
# Add some randomness to make it more realistic
base_lat, base_lon = random.choice(mock_locations)
lat = base_lat + random.uniform(-2, 2) # Add noise within ~200km
lon = base_lon + random.uniform(-2, 2)
return lat, lon
def real_plonk_prediction(image):
"""
Real PLONK prediction using the diff-plonk package
Now generates 32 samples for better uncertainty estimation
"""
from plonk.pipe import PlonkPipeline
import numpy as np
# Load the model (do this once at startup, not per request)
if not hasattr(gr, 'plonk_pipeline'):
print("Loading PLONK model...")
gr.plonk_pipeline = PlonkPipeline(model_path="nicolas-dufour/PLONK_YFCC")
print("PLONK model loaded successfully!")
# Get 32 predictions for uncertainty estimation
predicted_gps = gr.plonk_pipeline(image, batch_size=32, cfg=2.0, num_steps=32)
# Convert to numpy for easier processing
predictions = predicted_gps.cpu().numpy() # Shape: (32, 2)
# Calculate statistics
mean_lat = float(np.mean(predictions[:, 0]))
mean_lon = float(np.mean(predictions[:, 1]))
std_lat = float(np.std(predictions[:, 0]))
std_lon = float(np.std(predictions[:, 1]))
# Calculate uncertainty radius (approximate)
uncertainty_km = np.sqrt(std_lat**2 + std_lon**2) * 111.32 # Rough conversion to km
return mean_lat, mean_lon, uncertainty_km, len(predictions)
def predict_location(image):
"""
Main prediction function for Gradio interface
"""
try:
if image is None:
return "Please upload an image."
# Ensure RGB format
if image.mode != 'RGB':
image = image.convert('RGB')
# Get prediction (mock or real)
if MOCK_MODE:
lat, lon = mock_plonk_prediction()
confidence = "mock"
uncertainty_km = None
num_samples = 1
note = " (Mock prediction for testing)"
else:
lat, lon, uncertainty_km, num_samples = real_plonk_prediction(image)
confidence = "high"
note = f" (Real PLONK prediction, {num_samples} samples)"
# Format the result
uncertainty_text = f"\n**Uncertainty:** ±{uncertainty_km:.1f} km" if uncertainty_km is not None else ""
result = f"""🗺️ **Predicted Location**{note}
**Latitude:** {lat:.6f}
**Longitude:** {lon:.6f}{uncertainty_text}
**Confidence:** {confidence}
**Samples:** {num_samples}
**Mode:** {'🧪 Mock Testing' if MOCK_MODE else '🚀 Production'}
🌍 *This prediction estimates where the image was taken based on visual content.*
"""
return result
except Exception as e:
return f"❌ Error processing image: {str(e)}"
def predict_location_json(image):
"""
JSON API function for programmatic access
Returns structured data instead of formatted text
"""
try:
if image is None:
return {
"error": "No image provided",
"status": "error"
}
# Ensure RGB format
if image.mode != 'RGB':
image = image.convert('RGB')
# Get prediction (mock or real)
if MOCK_MODE:
lat, lon = mock_plonk_prediction()
confidence = "mock"
uncertainty_km = None
num_samples = 1
else:
lat, lon, uncertainty_km, num_samples = real_plonk_prediction(image)
confidence = "high"
result = {
"status": "success",
"mode": "mock" if MOCK_MODE else "production",
"predicted_location": {
"latitude": round(lat, 6),
"longitude": round(lon, 6)
},
"confidence": confidence,
"samples": num_samples,
"note": "This is a mock prediction for testing" if MOCK_MODE else f"Real PLONK prediction using {num_samples} samples"
}
# Add uncertainty info if available
if uncertainty_km is not None:
result["uncertainty_km"] = round(uncertainty_km, 1)
return result
except Exception as e:
return {
"error": str(e),
"status": "error"
}
# Create the Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
title="🗺️ PLONK: Around the World in 80 Timesteps"
) as demo:
# Header
gr.Markdown("""
# 🗺️ PLONK: Around the World in 80 Timesteps
A generative approach to global visual geolocation. Upload an image and PLONK will predict where it was taken!
This uses the PLONK model concept from the paper: *"Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation"*
**Current Mode:** {'🧪 Mock Testing' if MOCK_MODE else '🚀 Production'} - Real PLONK model predictions with 32 samples for uncertainty estimation.
**Configuration:** Guidance Scale = 2.0, Samples = 32, Steps = 32
""")
with gr.Tab("🖼️ Image Upload"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
label="Upload an image",
type="pil",
sources=["upload", "webcam", "clipboard"]
)
predict_btn = gr.Button(
"🔍 Predict Location",
variant="primary",
size="lg"
)
clear_btn = gr.ClearButton(
components=[image_input],
value="🗑️ Clear"
)
with gr.Column(scale=1):
output_text = gr.Markdown(
label="Prediction Result",
value="Upload an image and click 'Predict Location' to see results."
)
with gr.Tab("📡 API Information"):
gr.Markdown(f"""
## 🔗 API Access
This Space provides both web interface and programmatic API access:
### **REST API Endpoint**
```
POST https://kylanoconnor-plonk-geolocation.hf.space/api/predict
```
### **Python Example**
```python
import requests
# For API access
response = requests.post(
"https://kylanoconnor-plonk-geolocation.hf.space/api/predict",
files={{"file": open("image.jpg", "rb")}}
)
result = response.json()
print(f"Location: {{result['data']['latitude']}}, {{result['data']['longitude']}}")
```
### **cURL Example**
```bash
curl -X POST \\
-F "[email protected]" \\
"https://kylanoconnor-plonk-geolocation.hf.space/api/predict"
```
### **Gradio Client (Python)**
```python
from gradio_client import Client
client = Client("kylanoconnor/plonk-geolocation")
result = client.predict("path/to/image.jpg", api_name="/predict")
print(result)
```
### **JavaScript/Node.js**
```javascript
const formData = new FormData();
formData.append('data', imageFile);
const response = await fetch(
'https://kylanoconnor-plonk-geolocation.hf.space/api/predict',
{{
method: 'POST',
body: formData
}}
);
const result = await response.json();
console.log('Location:', result.data);
```
**Current Status:** {'🧪 Mock Mode - Returns realistic test coordinates' if MOCK_MODE else '🚀 Production Mode - Real PLONK predictions with 32 samples'}
**Response Format:**
- Latitude/Longitude coordinates
- Uncertainty estimation (±km radius)
- Number of samples used (32 for production)
- Prediction confidence metrics
**Rate Limits:** Standard Hugging Face Spaces limits apply
**CORS:** Enabled for web integration
""")
with gr.Tab("ℹ️ About"):
gr.Markdown(f"""
## About PLONK
PLONK is a generative approach to global visual geolocation that uses diffusion models to predict where images were taken.
**Paper:** [Around the World in 80 Timesteps: A Generative Approach to Global Visual Geolocation](https://arxiv.org/abs/2412.06781)
**Authors:** Nicolas Dufour, David Picard, Vicky Kalogeiton, Loic Landrieu
**Original Code:** https://github.com/nicolas-dufour/plonk
### Current Deployment
- **Mode:** {'Mock Testing' if MOCK_MODE else 'Production'}
- **Model:** {'Simulated predictions for API testing' if MOCK_MODE else 'Real PLONK model inference'}
- **Response Format:** Structured JSON + formatted text
- **API:** Fully functional REST endpoints
### Production Deployment
This Space is running with the real PLONK model using:
- **Model:** nicolas-dufour/PLONK_YFCC
- **Dataset:** YFCC-100M
- **Inference:** CFG=2.0, 32 samples, 32 timesteps for high quality predictions
- **Uncertainty:** Statistical analysis across 32 predictions for reliability estimation
### Available Models
- `nicolas-dufour/PLONK_YFCC` - YFCC-100M dataset
- `nicolas-dufour/PLONK_iNaturalist` - iNaturalist dataset
- `nicolas-dufour/PLONK_OSV_5M` - OpenStreetView-5M dataset
""")
# Event handlers
predict_btn.click(
fn=predict_location,
inputs=[image_input],
outputs=[output_text],
api_name="predict" # This enables API access at /api/predict
)
# Hidden API function for JSON responses
predict_json = gr.Interface(
fn=predict_location_json,
inputs=gr.Image(type="pil"),
outputs=gr.JSON(),
api_name="predict_json" # Available at /api/predict_json
)
# Add examples if available
try:
examples = [
["demo/examples/condor.jpg"],
["demo/examples/Kilimanjaro.jpg"],
["demo/examples/pigeon.png"]
]
gr.Examples(
examples=examples,
inputs=image_input,
outputs=output_text,
fn=predict_location,
cache_examples=True
)
except:
pass # Examples not available, skip
if __name__ == "__main__":
# For local testing
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=True
)