File size: 2,921 Bytes
eb450e3
6a03bd2
582395b
eb450e3
6a03bd2
eb450e3
b51f88d
5113576
6a03bd2
 
 
 
 
 
 
 
 
 
582395b
6a03bd2
 
 
 
 
 
 
e3c453c
6a03bd2
3cfecb5
6a03bd2
 
 
fa8b0f1
 
 
582395b
bd918d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0a172
5113576
bd918d5
 
 
 
 
 
 
 
 
 
5113576
eb450e3
bd918d5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import gradio as gr
from huggingface_hub import InferenceClient
import time

client = InferenceClient("lambdaindie/lambdai")

css = """
@import url('https://fonts.googleapis.com/css2?family=JetBrains+Mono&display=swap');

{
font-family: 'JetBrains Mono', monospace !important;
}

body {
background-color: #111;
color: #e0e0e0;
}

.markdown-think {
background-color: #1e1e1e;
border-left: 4px solid #555;
padding: 10px;
margin-bottom: 8px;
font-style: italic;
white-space: pre-wrap;
animation: pulse 1.5s infinite ease-in-out;
}

@keyframes pulse {
0% { opacity: 0.6; }
50% { opacity: 1.0; }
100% { opacity: 0.6; }
}
"""

def respond(message, history, system_message, max_tokens, temperature, top_p):
    messages = [{"role": "system", "content": system_message}] if system_message else []

    for user, assistant in history:
        if user:
            messages.append({"role": "user", "content": user})
        if assistant:
            messages.append({"role": "assistant", "content": assistant})

    thinking_prompt = messages + [{
        "role": "user",
        "content": f"{message}\n\nThink a bit step-by-step before answering."
    }]

    reasoning = ""
    yield '<div class="markdown-think">Thinking...</div>'

    start = time.time()

    for chunk in client.chat_completion(
        thinking_prompt,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = chunk.choices[0].delta.content or ""
        reasoning += token
        styled_thought = f'<div class="markdown-think">{reasoning.strip()}</div>'
        yield styled_thought

    elapsed = time.time() - start

    yield f"""
    <div style="margin-top:12px;padding:8px 12px;background-color:#222;border-left:4px solid #888;
                font-family:'JetBrains Mono', monospace;color:#ccc;font-size:14px;">
        Pensou por {elapsed:.1f} segundos
    </div>
    """

    time.sleep(2)

    final_prompt = messages + [
        {"role": "user", "content": message},
        {"role": "assistant", "content": reasoning.strip()},
        {"role": "user", "content": "Now answer based on your reasoning above."}
    ]

    final_answer = ""
    for chunk in client.chat_completion(
        final_prompt,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = chunk.choices[0].delta.content or ""
        final_answer += token
        yield final_answer.strip()

demo = gr.ChatInterface(
    fn=respond,
    title="λambdAI",
    theme=gr.themes.Base(),
    css=css,
    additional_inputs=[
        gr.Textbox(value="", label="System Message"),
        gr.Slider(64, 2048, value=512, step=1, label="Max Tokens"),
        gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
    ]
)

if __name__ == "__main__":
    demo.launch()