Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
client = InferenceClient("lambdaindie/lambdai", token=os.environ["HF_TOKEN"]) | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] if system_message else [] | |
for user, assistant in history: | |
if user: | |
messages.append({"role": "user", "content": user}) | |
if assistant: | |
messages.append({"role": "assistant", "content": assistant}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for chunk in client.text_generation( | |
messages, | |
max_new_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = chunk.choices[0].delta.content | |
response += token | |
yield response | |
with gr.Blocks() as demo: | |
gr.Markdown("# π§ lambdai β Chat Demo") | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
system_msg = gr.Textbox(label="System message", placeholder="e.g. You are a helpful assistant.") | |
with gr.Row(): | |
max_tokens = gr.Slider(1, 2048, value=512, step=1, label="Max tokens") | |
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") | |
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") | |
msg = gr.Textbox(placeholder="Ask something...", label="Your message") | |
state = gr.State([]) | |
def user_submit(user_message, history): | |
return "", history + [[user_message, None]] | |
def generate_response(message, history, sys_msg, max_tokens, temperature, top_p): | |
gen = respond(message, history, sys_msg, max_tokens, temperature, top_p) | |
return gen, history | |
msg.submit(user_submit, [msg, state], [msg, state], queue=False).then( | |
generate_response, | |
[msg, state, system_msg, max_tokens, temperature, top_p], | |
[chatbot, state] | |
) | |
if __name__ == "__main__": | |
demo.launch() |