File size: 10,888 Bytes
104f7bd d920423 6cf18f3 104f7bd c449242 104f7bd 022a086 d5886b3 d920423 022a086 104f7bd d5886b3 6cf18f3 104f7bd bee27c6 5fdb08e 6933483 d920423 6933483 104f7bd 6cf18f3 d5886b3 104f7bd 6933483 6cf18f3 104f7bd 6cf18f3 5f66658 d920423 5f66658 6cf18f3 5fdb08e 6cf18f3 5fdb08e 104f7bd 6cf18f3 5fdb08e 104f7bd 5fdb08e 104f7bd 5fdb08e 6cf18f3 aafc196 1cea20a 104f7bd d5886b3 104f7bd d7ef93c 104f7bd d920423 5f66658 5fdb08e d7ef93c 5f66658 d7ef93c d5886b3 d7ef93c d920423 d5886b3 d7ef93c 6933483 104f7bd 5f66658 104f7bd bee27c6 c960d15 d920423 aafc196 104f7bd 022a086 c960d15 d7ef93c d5886b3 d7ef93c 022a086 d5886b3 022a086 104f7bd c960d15 d5886b3 104f7bd 5fdb08e d5886b3 5fdb08e d5886b3 aafc196 d920423 1ebc0b3 d920423 aafc196 d920423 56a936d d920423 1ebc0b3 aafc196 56a936d d920423 d7ef93c 6933483 aafc196 1ebc0b3 aafc196 d920423 1ebc0b3 56a936d 1ebc0b3 56a936d 1ebc0b3 aafc196 56a936d d920423 56a936d aafc196 56a936d 1ebc0b3 aafc196 d920423 1ebc0b3 aafc196 6933483 104f7bd d5886b3 104f7bd d5886b3 104f7bd d7ef93c d5886b3 d7ef93c 104f7bd d5886b3 104f7bd d7ef93c 104f7bd 6933483 9cbac96 5fdb08e 104f7bd 5fdb08e df1de84 d5886b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import io
import argparse
import asyncio
import numpy as np
import ffmpeg
from time import time, sleep
from contextlib import asynccontextmanager
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from src.whisper_streaming.whisper_online import backend_factory, online_factory, add_shared_args
import math
import logging
from datetime import timedelta
def format_time(seconds):
return str(timedelta(seconds=int(seconds)))
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logging.getLogger().setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
##### LOAD ARGS #####
parser = argparse.ArgumentParser(description="Whisper FastAPI Online Server")
parser.add_argument(
"--host",
type=str,
default="localhost",
help="The host address to bind the server to.",
)
parser.add_argument(
"--port", type=int, default=8000, help="The port number to bind the server to."
)
parser.add_argument(
"--warmup-file",
type=str,
dest="warmup_file",
help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .",
)
parser.add_argument(
"--diarization",
type=bool,
default=False,
help="Whether to enable speaker diarization.",
)
parser.add_argument(
"--transcription",
type=bool,
default=True,
help="To disable to only see live diarization results.",
)
add_shared_args(parser)
args = parser.parse_args()
SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
BYTES_PER_SAMPLE = 2 # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE
MAX_BYTES_PER_SEC = 32000 * 5 # 5 seconds of audio at 32 kHz
##### LOAD APP #####
@asynccontextmanager
async def lifespan(app: FastAPI):
global asr, tokenizer, diarization
if args.transcription:
asr, tokenizer = backend_factory(args)
else:
asr, tokenizer = None, None
if args.diarization:
from src.diarization.diarization_online import DiartDiarization
diarization = DiartDiarization(SAMPLE_RATE)
else :
diarization = None
yield
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Load demo HTML for the root endpoint
with open("src/web/live_transcription.html", "r", encoding="utf-8") as f:
html = f.read()
async def start_ffmpeg_decoder():
"""
Start an FFmpeg process in async streaming mode that reads WebM from stdin
and outputs raw s16le PCM on stdout. Returns the process object.
"""
process = (
ffmpeg.input("pipe:0", format="webm")
.output(
"pipe:1",
format="s16le",
acodec="pcm_s16le",
ac=CHANNELS,
ar=str(SAMPLE_RATE),
)
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
)
return process
##### ENDPOINTS #####
@app.get("/")
async def get():
return HTMLResponse(html)
@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
logger.info("WebSocket connection opened.")
ffmpeg_process = None
pcm_buffer = bytearray()
online = online_factory(args, asr, tokenizer) if args.transcription else None
async def restart_ffmpeg():
nonlocal ffmpeg_process, online, pcm_buffer
if ffmpeg_process:
try:
ffmpeg_process.kill()
await asyncio.get_event_loop().run_in_executor(None, ffmpeg_process.wait)
except Exception as e:
logger.warning(f"Error killing FFmpeg process: {e}")
ffmpeg_process = await start_ffmpeg_decoder()
pcm_buffer = bytearray()
online = online_factory(args, asr, tokenizer) if args.transcription else None
logger.info("FFmpeg process started.")
await restart_ffmpeg()
async def ffmpeg_stdout_reader():
nonlocal ffmpeg_process, online, pcm_buffer
loop = asyncio.get_event_loop()
full_transcription = ""
beg = time()
beg_loop = time()
chunk_history = [] # Will store dicts: {beg, end, text, speaker}
while True:
try:
elapsed_time = math.floor((time() - beg) * 10) / 10 # Round to 0.1 sec
ffmpeg_buffer_from_duration = max(int(32000 * elapsed_time), 4096)
beg = time()
# Read chunk with timeout
try:
chunk = await asyncio.wait_for(
loop.run_in_executor(
None, ffmpeg_process.stdout.read, ffmpeg_buffer_from_duration
),
timeout=5.0
)
except asyncio.TimeoutError:
logger.warning("FFmpeg read timeout. Restarting...")
await restart_ffmpeg()
full_transcription = ""
chunk_history = []
beg = time()
continue # Skip processing and read from new process
if not chunk:
logger.info("FFmpeg stdout closed.")
break
pcm_buffer.extend(chunk)
if len(pcm_buffer) >= BYTES_PER_SEC:
if len(pcm_buffer) > MAX_BYTES_PER_SEC:
logger.warning(
f"""Audio buffer is too large: {len(pcm_buffer) / BYTES_PER_SEC:.2f} seconds.
The model probably struggles to keep up. Consider using a smaller model.
""")
# Convert int16 -> float32
pcm_array = (
np.frombuffer(pcm_buffer[:MAX_BYTES_PER_SEC], dtype=np.int16).astype(np.float32)
/ 32768.0
)
pcm_buffer = pcm_buffer[MAX_BYTES_PER_SEC:]
if args.transcription:
logger.info(f"{len(online.audio_buffer) / online.SAMPLING_RATE} seconds of audio will be processed by the model.")
online.insert_audio_chunk(pcm_array)
transcription = online.process_iter()
if transcription.start:
chunk_history.append({
"beg": transcription.start,
"end": transcription.end,
"text": transcription.text,
"speaker": -1
})
full_transcription += transcription.text if transcription else ""
buffer = online.get_buffer()
if buffer in full_transcription: # With VAC, the buffer is not updated until the next chunk is processed
buffer = ""
else:
chunk_history.append({
"beg": time() - beg_loop,
"end": time() - beg_loop + 1,
"text": '',
"speaker": -1
})
sleep(1)
buffer = ''
if args.diarization:
await diarization.diarize(pcm_array)
end_attributed_speaker = diarization.assign_speakers_to_chunks(chunk_history)
current_speaker = -10
lines = []
last_end_diarized = 0
previous_speaker = -1
for ind, ch in enumerate(chunk_history):
speaker = ch.get("speaker")
if args.diarization:
if speaker == -1 or speaker == 0:
if ch['end'] < end_attributed_speaker:
speaker = previous_speaker
else:
speaker = 0
else:
last_end_diarized = max(ch['end'], last_end_diarized)
if speaker != current_speaker:
lines.append(
{
"speaker": speaker,
"text": ch['text'],
"beg": format_time(ch['beg']),
"end": format_time(ch['end']),
"diff": round(ch['end'] - last_end_diarized, 2)
}
)
current_speaker = speaker
else:
lines[-1]["text"] += ch['text']
lines[-1]["end"] = format_time(ch['end'])
lines[-1]["diff"] = round(ch['end'] - last_end_diarized, 2)
response = {"lines": lines, "buffer": buffer}
await websocket.send_json(response)
except Exception as e:
logger.warning(f"Exception in ffmpeg_stdout_reader: {e}")
break
logger.info("Exiting ffmpeg_stdout_reader...")
stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())
try:
while True:
# Receive incoming WebM audio chunks from the client
message = await websocket.receive_bytes()
try:
ffmpeg_process.stdin.write(message)
ffmpeg_process.stdin.flush()
except (BrokenPipeError, AttributeError) as e:
logger.warning(f"Error writing to FFmpeg: {e}. Restarting...")
await restart_ffmpeg()
ffmpeg_process.stdin.write(message)
ffmpeg_process.stdin.flush()
except WebSocketDisconnect:
logger.warning("WebSocket disconnected.")
finally:
stdout_reader_task.cancel()
try:
ffmpeg_process.stdin.close()
ffmpeg_process.wait()
except:
pass
if args.diarization:
diarization.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True,
log_level="info"
) |