File size: 10,888 Bytes
104f7bd
 
 
 
 
d920423
6cf18f3
104f7bd
 
 
 
 
c449242
104f7bd
022a086
d5886b3
d920423
 
 
 
022a086
104f7bd
d5886b3
 
 
 
 
6cf18f3
104f7bd
bee27c6
5fdb08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6933483
 
 
 
 
 
 
 
d920423
 
 
 
 
 
6933483
104f7bd
 
 
6cf18f3
 
 
 
 
d5886b3
104f7bd
6933483
 
6cf18f3
104f7bd
6cf18f3
 
5f66658
d920423
 
 
 
5f66658
 
 
 
 
 
6cf18f3
5fdb08e
6cf18f3
 
 
 
 
 
 
 
5fdb08e
104f7bd
6cf18f3
 
 
5fdb08e
104f7bd
 
 
 
 
 
5fdb08e
 
 
 
 
 
 
 
104f7bd
 
 
 
5fdb08e
6cf18f3
 
 
 
 
aafc196
1cea20a
104f7bd
 
d5886b3
104f7bd
d7ef93c
104f7bd
d920423
5f66658
5fdb08e
d7ef93c
5f66658
d7ef93c
 
 
 
 
d5886b3
d7ef93c
 
d920423
d5886b3
d7ef93c
 
6933483
104f7bd
5f66658
104f7bd
bee27c6
c960d15
d920423
aafc196
 
104f7bd
 
022a086
 
c960d15
d7ef93c
 
 
 
 
 
 
 
 
 
d5886b3
d7ef93c
 
 
 
 
 
022a086
d5886b3
022a086
104f7bd
 
c960d15
d5886b3
 
 
 
 
104f7bd
5fdb08e
d5886b3
5fdb08e
 
d5886b3
aafc196
d920423
 
 
 
 
 
 
 
 
1ebc0b3
d920423
 
 
 
 
 
aafc196
d920423
56a936d
d920423
1ebc0b3
aafc196
56a936d
d920423
d7ef93c
6933483
aafc196
1ebc0b3
aafc196
d920423
1ebc0b3
56a936d
 
1ebc0b3
56a936d
1ebc0b3
 
 
 
 
 
 
 
 
 
 
aafc196
 
56a936d
d920423
 
 
56a936d
aafc196
 
56a936d
1ebc0b3
aafc196
d920423
1ebc0b3
 
aafc196
6933483
 
104f7bd
d5886b3
104f7bd
 
d5886b3
104f7bd
 
 
 
 
 
 
d7ef93c
 
 
 
d5886b3
d7ef93c
 
 
104f7bd
d5886b3
104f7bd
 
 
d7ef93c
 
104f7bd
 
6933483
 
 
9cbac96
5fdb08e
104f7bd
 
5fdb08e
 
df1de84
 
d5886b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import io
import argparse
import asyncio
import numpy as np
import ffmpeg
from time import time, sleep
from contextlib import asynccontextmanager

from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware

from src.whisper_streaming.whisper_online import backend_factory, online_factory, add_shared_args

import math
import logging
from datetime import timedelta

def format_time(seconds):
    return str(timedelta(seconds=int(seconds)))


logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logging.getLogger().setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)

##### LOAD ARGS #####

parser = argparse.ArgumentParser(description="Whisper FastAPI Online Server")
parser.add_argument(
    "--host",
    type=str,
    default="localhost",
    help="The host address to bind the server to.",
)
parser.add_argument(
    "--port", type=int, default=8000, help="The port number to bind the server to."
)
parser.add_argument(
    "--warmup-file",
    type=str,
    dest="warmup_file",
    help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .",
)

parser.add_argument(
    "--diarization",
    type=bool,
    default=False,
    help="Whether to enable speaker diarization.",
)

parser.add_argument(
    "--transcription",
    type=bool,
    default=True,
    help="To disable to only see live diarization results.",
)

add_shared_args(parser)
args = parser.parse_args()

SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
BYTES_PER_SAMPLE = 2  # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE
MAX_BYTES_PER_SEC = 32000 * 5  # 5 seconds of audio at 32 kHz



##### LOAD APP #####

@asynccontextmanager
async def lifespan(app: FastAPI):
    global asr, tokenizer, diarization
    if args.transcription:
        asr, tokenizer = backend_factory(args)
    else:
        asr, tokenizer = None, None

    if args.diarization:
        from src.diarization.diarization_online import DiartDiarization
        diarization = DiartDiarization(SAMPLE_RATE)
    else :
        diarization = None
    yield

app = FastAPI(lifespan=lifespan)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


# Load demo HTML for the root endpoint
with open("src/web/live_transcription.html", "r", encoding="utf-8") as f:
    html = f.read()

async def start_ffmpeg_decoder():
    """
    Start an FFmpeg process in async streaming mode that reads WebM from stdin
    and outputs raw s16le PCM on stdout. Returns the process object.
    """
    process = (
        ffmpeg.input("pipe:0", format="webm")
        .output(
            "pipe:1",
            format="s16le",
            acodec="pcm_s16le",
            ac=CHANNELS,
            ar=str(SAMPLE_RATE),
        )
        .run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
    )
    return process


##### ENDPOINTS #####

@app.get("/")
async def get():
    return HTMLResponse(html)

@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    logger.info("WebSocket connection opened.")

    ffmpeg_process = None
    pcm_buffer = bytearray()
    online = online_factory(args, asr, tokenizer) if args.transcription else None
    

    async def restart_ffmpeg():
        nonlocal ffmpeg_process, online, pcm_buffer
        if ffmpeg_process:
            try:
                ffmpeg_process.kill()
                await asyncio.get_event_loop().run_in_executor(None, ffmpeg_process.wait)
            except Exception as e:
                logger.warning(f"Error killing FFmpeg process: {e}")
        ffmpeg_process = await start_ffmpeg_decoder()
        pcm_buffer = bytearray()
        online = online_factory(args, asr, tokenizer) if args.transcription else None
        logger.info("FFmpeg process started.")

    await restart_ffmpeg()

    async def ffmpeg_stdout_reader():
        nonlocal ffmpeg_process, online, pcm_buffer
        loop = asyncio.get_event_loop()
        full_transcription = ""
        beg = time()
        beg_loop = time()
        chunk_history = []  # Will store dicts: {beg, end, text, speaker}
        
        while True:
            try:
                elapsed_time = math.floor((time() - beg) * 10) / 10 # Round to 0.1 sec
                ffmpeg_buffer_from_duration = max(int(32000 * elapsed_time), 4096)
                beg = time()

                # Read chunk with timeout
                try:
                    chunk = await asyncio.wait_for(
                        loop.run_in_executor(
                            None, ffmpeg_process.stdout.read, ffmpeg_buffer_from_duration
                        ),
                        timeout=5.0
                    )
                except asyncio.TimeoutError:
                    logger.warning("FFmpeg read timeout. Restarting...")
                    await restart_ffmpeg()
                    full_transcription = ""
                    chunk_history = []
                    beg = time()
                    continue  # Skip processing and read from new process

                if not chunk:
                    logger.info("FFmpeg stdout closed.")
                    break

                pcm_buffer.extend(chunk)
                if len(pcm_buffer) >= BYTES_PER_SEC:
                    if len(pcm_buffer) > MAX_BYTES_PER_SEC:
                        logger.warning(
                            f"""Audio buffer is too large: {len(pcm_buffer) / BYTES_PER_SEC:.2f} seconds.
                            The model probably struggles to keep up. Consider using a smaller model.
                            """)
                    # Convert int16 -> float32
                    pcm_array = (
                        np.frombuffer(pcm_buffer[:MAX_BYTES_PER_SEC], dtype=np.int16).astype(np.float32)
                        / 32768.0
                    )
                    pcm_buffer = pcm_buffer[MAX_BYTES_PER_SEC:]
                    
                    if args.transcription:
                        logger.info(f"{len(online.audio_buffer) / online.SAMPLING_RATE} seconds of audio will be processed by the model.")
                        online.insert_audio_chunk(pcm_array)
                        transcription = online.process_iter()
                        if transcription.start:
                            chunk_history.append({
                                "beg": transcription.start,
                                "end": transcription.end,
                                "text": transcription.text,
                                "speaker": -1
                            })
                        full_transcription += transcription.text if transcription else ""
                        buffer = online.get_buffer()
                        if buffer in full_transcription: # With VAC, the buffer is not updated until the next chunk is processed
                            buffer = ""
                    else:
                        chunk_history.append({
                                "beg": time() - beg_loop,
                                "end": time() - beg_loop + 1,
                                "text": '',
                                "speaker": -1
                        })
                        sleep(1)
                        buffer = ''

                    if args.diarization:
                        await diarization.diarize(pcm_array)
                        end_attributed_speaker = diarization.assign_speakers_to_chunks(chunk_history)

                    
                    current_speaker = -10
                    lines = []
                    last_end_diarized = 0
                    previous_speaker = -1
                    for ind, ch in enumerate(chunk_history):
                        speaker = ch.get("speaker")
                        if args.diarization:
                            if speaker == -1 or speaker == 0:
                                if ch['end'] < end_attributed_speaker:
                                    speaker = previous_speaker
                                else:
                                    speaker = 0
                            else:
                                last_end_diarized = max(ch['end'], last_end_diarized)

                        if speaker != current_speaker:
                            lines.append(
                                {
                                    "speaker": speaker,
                                    "text": ch['text'],
                                    "beg": format_time(ch['beg']),
                                    "end": format_time(ch['end']),
                                    "diff": round(ch['end'] - last_end_diarized, 2)
                                }
                            )
                            current_speaker = speaker
                        else:
                            lines[-1]["text"] += ch['text']
                            lines[-1]["end"] = format_time(ch['end'])
                            lines[-1]["diff"] = round(ch['end'] - last_end_diarized, 2)
                            
                    response = {"lines": lines, "buffer": buffer}
                    await websocket.send_json(response)
                    
            except Exception as e:
                logger.warning(f"Exception in ffmpeg_stdout_reader: {e}")
                break

        logger.info("Exiting ffmpeg_stdout_reader...")

    stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())

    try:
        while True:
            # Receive incoming WebM audio chunks from the client
            message = await websocket.receive_bytes()
            try:
                ffmpeg_process.stdin.write(message)
                ffmpeg_process.stdin.flush()
            except (BrokenPipeError, AttributeError) as e:
                logger.warning(f"Error writing to FFmpeg: {e}. Restarting...")
                await restart_ffmpeg()
                ffmpeg_process.stdin.write(message)
                ffmpeg_process.stdin.flush()
    except WebSocketDisconnect:
        logger.warning("WebSocket disconnected.")
    finally:
        stdout_reader_task.cancel()
        try:
            ffmpeg_process.stdin.close()
            ffmpeg_process.wait()
        except:
            pass
        if args.diarization:
            diarization.close()



if __name__ == "__main__":
    import uvicorn

    uvicorn.run(
        "whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True,
        log_level="info"
    )