File size: 7,597 Bytes
104f7bd c960d15 104f7bd c449242 104f7bd bee27c6 5fdb08e 6933483 104f7bd aa0ba59 104f7bd 6933483 104f7bd cc68f3b 104f7bd 5fdb08e 104f7bd 5fdb08e 104f7bd 5fdb08e 104f7bd 5fdb08e 104f7bd 5fdb08e 104f7bd 5fdb08e aafc196 1cea20a 104f7bd aa0ba59 5fdb08e 6933483 104f7bd bee27c6 c960d15 aafc196 104f7bd c960d15 5fdb08e c960d15 104f7bd c960d15 104f7bd 5fdb08e c960d15 104f7bd aafc196 bee27c6 b7c5736 5fdb08e bee27c6 b7c5736 5fdb08e bee27c6 aafc196 6933483 aafc196 6933483 104f7bd 9cbac96 6933483 9cbac96 5fdb08e 104f7bd 5fdb08e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import io
import argparse
import asyncio
import numpy as np
import ffmpeg
from time import time
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from src.whisper_streaming.whisper_online import backend_factory, online_factory, add_shared_args
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
parser = argparse.ArgumentParser(description="Whisper FastAPI Online Server")
parser.add_argument(
"--host",
type=str,
default="localhost",
help="The host address to bind the server to.",
)
parser.add_argument(
"--port", type=int, default=8000, help="The port number to bind the server to."
)
parser.add_argument(
"--warmup-file",
type=str,
dest="warmup_file",
help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .",
)
parser.add_argument(
"--diarization",
type=bool,
default=False,
help="Whether to enable speaker diarization.",
)
add_shared_args(parser)
args = parser.parse_args()
asr, tokenizer = backend_factory(args)
if args.diarization:
from src.diarization.diarization_online import DiartDiarization
# Load demo HTML for the root endpoint
with open("src/web/live_transcription.html", "r", encoding="utf-8") as f:
html = f.read()
@app.get("/")
async def get():
return HTMLResponse(html)
SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
BYTES_PER_SAMPLE = 2 # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE
async def start_ffmpeg_decoder():
"""
Start an FFmpeg process in async streaming mode that reads WebM from stdin
and outputs raw s16le PCM on stdout. Returns the process object.
"""
process = (
ffmpeg.input("pipe:0", format="webm")
.output(
"pipe:1",
format="s16le",
acodec="pcm_s16le",
ac=CHANNELS,
ar=str(SAMPLE_RATE),
)
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
)
return process
@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
print("WebSocket connection opened.")
ffmpeg_process = await start_ffmpeg_decoder()
pcm_buffer = bytearray()
print("Loading online.")
online = online_factory(args, asr, tokenizer)
print("Online loaded.")
if args.diarization:
diarization = DiartDiarization(SAMPLE_RATE)
# Continuously read decoded PCM from ffmpeg stdout in a background task
async def ffmpeg_stdout_reader():
nonlocal pcm_buffer
loop = asyncio.get_event_loop()
full_transcription = ""
beg = time()
chunk_history = [] # Will store dicts: {beg, end, text, speaker}
while True:
try:
elapsed_time = int(time() - beg)
beg = time()
chunk = await loop.run_in_executor(
None, ffmpeg_process.stdout.read, 32000 * elapsed_time
)
if (
not chunk
): # The first chunk will be almost empty, FFmpeg is still starting up
chunk = await loop.run_in_executor(
None, ffmpeg_process.stdout.read, 4096
)
if not chunk: # FFmpeg might have closed
print("FFmpeg stdout closed.")
break
pcm_buffer.extend(chunk)
if len(pcm_buffer) >= BYTES_PER_SEC:
# Convert int16 -> float32
pcm_array = (
np.frombuffer(pcm_buffer, dtype=np.int16).astype(np.float32)
/ 32768.0
)
pcm_buffer = bytearray()
online.insert_audio_chunk(pcm_array)
beg_trans, end_trans, trans = online.process_iter()
if trans:
chunk_history.append({
"beg": beg_trans,
"end": end_trans,
"text": trans,
"speaker": "0"
})
full_transcription += trans
if args.vac:
buffer = online.online.concatenate_tsw(
online.online.transcript_buffer.buffer
)[
2
] # We need to access the underlying online object to get the buffer
else:
buffer = online.concatenate_tsw(online.transcript_buffer.buffer)[2]
if (
buffer in full_transcription
): # With VAC, the buffer is not updated until the next chunk is processed
buffer = ""
lines = [
{
"speaker": "0",
"text": "",
}
]
if args.diarization:
await diarization.diarize(pcm_array)
diarization.assign_speakers_to_chunks(chunk_history)
for ch in chunk_history:
if args.diarization and ch["speaker"] and ch["speaker"][-1] != lines[-1]["speaker"]:
lines.append(
{
"speaker": ch["speaker"][-1],
"text": ch['text'],
}
)
else:
lines[-1]["text"] += ch['text']
response = {"lines": lines, "buffer": buffer}
await websocket.send_json(response)
except Exception as e:
print(f"Exception in ffmpeg_stdout_reader: {e}")
break
print("Exiting ffmpeg_stdout_reader...")
stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())
try:
while True:
# Receive incoming WebM audio chunks from the client
message = await websocket.receive_bytes()
# Pass them to ffmpeg via stdin
ffmpeg_process.stdin.write(message)
ffmpeg_process.stdin.flush()
except WebSocketDisconnect:
print("WebSocket connection closed.")
except Exception as e:
print(f"Error in websocket loop: {e}")
finally:
# Clean up ffmpeg and the reader task
try:
ffmpeg_process.stdin.close()
except:
pass
stdout_reader_task.cancel()
try:
ffmpeg_process.stdout.close()
except:
pass
ffmpeg_process.wait()
del online
if args.diarization:
# Stop Diart
diarization.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(
"whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True
)
|