File size: 7,597 Bytes
104f7bd
 
 
 
 
c960d15
104f7bd
 
 
 
 
c449242
104f7bd
 
 
 
 
 
 
 
 
 
 
bee27c6
5fdb08e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6933483
 
 
 
 
 
 
 
 
104f7bd
 
 
aa0ba59
104f7bd
6933483
 
 
 
104f7bd
cc68f3b
104f7bd
 
5fdb08e
104f7bd
 
 
 
5fdb08e
104f7bd
 
 
5fdb08e
104f7bd
 
5fdb08e
104f7bd
 
 
 
 
 
5fdb08e
 
 
 
 
 
 
 
104f7bd
 
 
 
5fdb08e
aafc196
1cea20a
104f7bd
 
 
 
 
 
aa0ba59
 
 
5fdb08e
6933483
 
 
104f7bd
 
 
 
bee27c6
c960d15
aafc196
 
 
104f7bd
 
c960d15
 
5fdb08e
 
 
 
 
 
 
 
 
 
c960d15
 
104f7bd
 
 
c960d15
104f7bd
5fdb08e
 
 
 
c960d15
104f7bd
aafc196
 
 
 
 
 
 
 
 
 
 
bee27c6
b7c5736
5fdb08e
 
 
 
bee27c6
b7c5736
5fdb08e
 
 
bee27c6
aafc196
 
 
 
 
 
 
 
6933483
aafc196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6933483
 
104f7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cbac96
6933483
 
 
 
 
9cbac96
5fdb08e
 
104f7bd
 
5fdb08e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import io
import argparse
import asyncio
import numpy as np
import ffmpeg
from time import time

from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware

from src.whisper_streaming.whisper_online import backend_factory, online_factory, add_shared_args

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


parser = argparse.ArgumentParser(description="Whisper FastAPI Online Server")
parser.add_argument(
    "--host",
    type=str,
    default="localhost",
    help="The host address to bind the server to.",
)
parser.add_argument(
    "--port", type=int, default=8000, help="The port number to bind the server to."
)
parser.add_argument(
    "--warmup-file",
    type=str,
    dest="warmup_file",
    help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .",
)

parser.add_argument(
    "--diarization",
    type=bool,
    default=False,
    help="Whether to enable speaker diarization.",
)


add_shared_args(parser)
args = parser.parse_args()

asr, tokenizer = backend_factory(args)

if args.diarization:
    from src.diarization.diarization_online import DiartDiarization


# Load demo HTML for the root endpoint
with open("src/web/live_transcription.html", "r", encoding="utf-8") as f:
    html = f.read()


@app.get("/")
async def get():
    return HTMLResponse(html)


SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
BYTES_PER_SAMPLE = 2  # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE


async def start_ffmpeg_decoder():
    """
    Start an FFmpeg process in async streaming mode that reads WebM from stdin
    and outputs raw s16le PCM on stdout. Returns the process object.
    """
    process = (
        ffmpeg.input("pipe:0", format="webm")
        .output(
            "pipe:1",
            format="s16le",
            acodec="pcm_s16le",
            ac=CHANNELS,
            ar=str(SAMPLE_RATE),
        )
        .run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
    )
    return process



@app.websocket("/asr")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    print("WebSocket connection opened.")

    ffmpeg_process = await start_ffmpeg_decoder()
    pcm_buffer = bytearray()
    print("Loading online.")
    online = online_factory(args, asr, tokenizer)
    print("Online loaded.")

    if args.diarization:
        diarization = DiartDiarization(SAMPLE_RATE)

    # Continuously read decoded PCM from ffmpeg stdout in a background task
    async def ffmpeg_stdout_reader():
        nonlocal pcm_buffer
        loop = asyncio.get_event_loop()
        full_transcription = ""
        beg = time()
        
        chunk_history = []  # Will store dicts: {beg, end, text, speaker}
        
        while True:
            try:
                elapsed_time = int(time() - beg)
                beg = time()
                chunk = await loop.run_in_executor(
                    None, ffmpeg_process.stdout.read, 32000 * elapsed_time
                )
                if (
                    not chunk
                ):  # The first chunk will be almost empty, FFmpeg is still starting up
                    chunk = await loop.run_in_executor(
                        None, ffmpeg_process.stdout.read, 4096
                    )
                    if not chunk:  # FFmpeg might have closed
                        print("FFmpeg stdout closed.")
                        break

                pcm_buffer.extend(chunk)

                if len(pcm_buffer) >= BYTES_PER_SEC:
                    # Convert int16 -> float32
                    pcm_array = (
                        np.frombuffer(pcm_buffer, dtype=np.int16).astype(np.float32)
                        / 32768.0
                    )
                    pcm_buffer = bytearray()
                    online.insert_audio_chunk(pcm_array)
                    beg_trans, end_trans, trans = online.process_iter()
                    
                    if trans:
                        chunk_history.append({
                        "beg": beg_trans,
                        "end": end_trans,
                        "text": trans,
                        "speaker": "0"
                        })
                    
                    full_transcription += trans
                    if args.vac:
                        buffer = online.online.concatenate_tsw(
                            online.online.transcript_buffer.buffer
                        )[
                            2
                        ]  # We need to access the underlying online object to get the buffer
                    else:
                        buffer = online.concatenate_tsw(online.transcript_buffer.buffer)[2]
                    if (
                        buffer in full_transcription
                    ):  # With VAC, the buffer is not updated until the next chunk is processed
                        buffer = ""
                                        
                    lines = [
                        {
                            "speaker": "0",
                            "text": "",
                        }
                    ]
                    
                    if args.diarization:
                        await diarization.diarize(pcm_array)
                        diarization.assign_speakers_to_chunks(chunk_history)

                    for ch in chunk_history:
                        if args.diarization and ch["speaker"] and ch["speaker"][-1] != lines[-1]["speaker"]:
                            lines.append(
                                {
                                    "speaker": ch["speaker"][-1],
                                    "text": ch['text'],
                                }
                            )
                        else:
                            lines[-1]["text"] += ch['text']

                    response = {"lines": lines, "buffer": buffer}
                    await websocket.send_json(response)
                    
            except Exception as e:
                print(f"Exception in ffmpeg_stdout_reader: {e}")
                break

        print("Exiting ffmpeg_stdout_reader...")

    stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())

    try:
        while True:
            # Receive incoming WebM audio chunks from the client
            message = await websocket.receive_bytes()
            # Pass them to ffmpeg via stdin
            ffmpeg_process.stdin.write(message)
            ffmpeg_process.stdin.flush()

    except WebSocketDisconnect:
        print("WebSocket connection closed.")
    except Exception as e:
        print(f"Error in websocket loop: {e}")
    finally:
        # Clean up ffmpeg and the reader task
        try:
            ffmpeg_process.stdin.close()
        except:
            pass
        stdout_reader_task.cancel()

        try:
            ffmpeg_process.stdout.close()
        except:
            pass

        ffmpeg_process.wait()
        del online
        
        if args.diarization:
            # Stop Diart
            diarization.close()




if __name__ == "__main__":
    import uvicorn

    uvicorn.run(
        "whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True
    )