File size: 4,576 Bytes
104f7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import io
import argparse
import asyncio
import numpy as np
import ffmpeg

from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware

from whisper_online import asr_factory, add_shared_args

app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


# Argument parsing
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default='localhost')
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--warmup-file", type=str, dest="warmup_file", 
        help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .")
add_shared_args(parser)
args = parser.parse_args()

# Initialize Whisper
asr, online = asr_factory(args)

# Load demo HTML for the root endpoint
with open("live_transcription.html", "r") as f:
    html = f.read()

@app.get("/")
async def get():
    return HTMLResponse(html)

# Streaming constants
SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
BYTES_PER_SAMPLE = 2               # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE

async def start_ffmpeg_decoder():
    """
    Start an FFmpeg process in async streaming mode that reads WebM from stdin
    and outputs raw s16le PCM on stdout. Returns the process object.
    """
    process = (
        ffmpeg
        .input('pipe:0', format='webm')
        .output('pipe:1', format='s16le', acodec='pcm_s16le', ac=CHANNELS, ar=str(SAMPLE_RATE))
        .run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
    )
    return process

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    print("WebSocket connection opened.")

    ffmpeg_process = await start_ffmpeg_decoder()
    pcm_buffer = bytearray()

    # Continuously read decoded PCM from ffmpeg stdout in a background task
    async def ffmpeg_stdout_reader():
        nonlocal pcm_buffer
        loop = asyncio.get_event_loop()
        while True:
            try:
                chunk = await loop.run_in_executor(None, ffmpeg_process.stdout.read, 4096)
                if not chunk:  # FFmpeg might have closed
                    print("FFmpeg stdout closed.")
                    break

                pcm_buffer.extend(chunk)

                # Process in 3-second batches
                while len(pcm_buffer) >= BYTES_PER_SEC:
                    three_sec_chunk = pcm_buffer[:BYTES_PER_SEC]
                    del pcm_buffer[:BYTES_PER_SEC]

                    # Convert int16 -> float32
                    pcm_array = np.frombuffer(three_sec_chunk, dtype=np.int16).astype(np.float32) / 32768.0

                    # Send PCM data to Whisper
                    online.insert_audio_chunk(pcm_array)
                    transcription = online.process_iter()
                    buffer = online.to_flush(online.transcript_buffer.buffer)

                    # Return partial transcription results to the client
                    await websocket.send_json({
                        "transcription": transcription[2],
                        "buffer": buffer[2]
                    })
            except Exception as e:
                print(f"Exception in ffmpeg_stdout_reader: {e}")
                break

        print("Exiting ffmpeg_stdout_reader...")

    stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())

    try:
        while True:
            # Receive incoming WebM audio chunks from the client
            message = await websocket.receive_bytes()
            # Pass them to ffmpeg via stdin
            ffmpeg_process.stdin.write(message)
            ffmpeg_process.stdin.flush()

    except WebSocketDisconnect:
        print("WebSocket connection closed.")
    except Exception as e:
        print(f"Error in websocket loop: {e}")
    finally:
        # Clean up ffmpeg and the reader task
        try:
            ffmpeg_process.stdin.close()
        except:
            pass
        stdout_reader_task.cancel()

        try:
            ffmpeg_process.stdout.close()
        except:
            pass

        ffmpeg_process.wait()
        
        
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True)