WhisperLiveKitDiarization / whisper_online.py
SilasKieser's picture
improve logging in whisper_online.py
944f370
raw
history blame
13.1 kB
#!/usr/bin/env python3
import sys
import numpy as np
import librosa
from functools import lru_cache
import time
import logging
from src.whisper_streaming.backends import FasterWhisperASR, MLXWhisper, WhisperTimestampedASR, OpenaiApiASR
from src.whisper_streaming.online_asr import OnlineASRProcessor, VACOnlineASRProcessor
logger = logging.getLogger(__name__)
@lru_cache(10**6)
def load_audio(fname):
a, _ = librosa.load(fname, sr=16000, dtype=np.float32)
return a
def load_audio_chunk(fname, beg, end):
audio = load_audio(fname)
beg_s = int(beg * 16000)
end_s = int(end * 16000)
return audio[beg_s:end_s]
WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(
","
)
def create_tokenizer(lan):
"""returns an object that has split function that works like the one of MosesTokenizer"""
assert (
lan in WHISPER_LANG_CODES
), "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES)
if lan == "uk":
import tokenize_uk
class UkrainianTokenizer:
def split(self, text):
return tokenize_uk.tokenize_sents(text)
return UkrainianTokenizer()
# supported by fast-mosestokenizer
if (
lan
in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split()
):
from mosestokenizer import MosesSentenceSplitter
return MosesSentenceSplitter(lan)
# the following languages are in Whisper, but not in wtpsplit:
if (
lan
in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split()
):
logger.debug(
f"{lan} code is not supported by wtpsplit. Going to use None lang_code option."
)
lan = None
from wtpsplit import WtP
# downloads the model from huggingface on the first use
wtp = WtP("wtp-canine-s-12l-no-adapters")
class WtPtok:
def split(self, sent):
return wtp.split(sent, lang_code=lan)
return WtPtok()
def add_shared_args(parser):
"""shared args for simulation (this entry point) and server
parser: argparse.ArgumentParser object
"""
parser.add_argument(
"--min-chunk-size",
type=float,
default=1.0,
help="Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.",
)
parser.add_argument(
"--model",
type=str,
default="large-v3-turbo",
choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large,large-v3-turbo".split(
","
),
help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.",
)
parser.add_argument(
"--model_cache_dir",
type=str,
default=None,
help="Overriding the default model cache dir where models downloaded from the hub are saved",
)
parser.add_argument(
"--model_dir",
type=str,
default=None,
help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.",
)
parser.add_argument(
"--lan",
"--language",
type=str,
default="auto",
help="Source language code, e.g. en,de,cs, or 'auto' for language detection.",
)
parser.add_argument(
"--task",
type=str,
default="transcribe",
choices=["transcribe", "translate"],
help="Transcribe or translate.",
)
parser.add_argument(
"--backend",
type=str,
default="faster-whisper",
choices=["faster-whisper", "whisper_timestamped", "mlx-whisper", "openai-api"],
help="Load only this backend for Whisper processing.",
)
parser.add_argument(
"--vac",
action="store_true",
default=False,
help="Use VAC = voice activity controller. Recommended. Requires torch.",
)
parser.add_argument(
"--vac-chunk-size", type=float, default=0.04, help="VAC sample size in seconds."
)
parser.add_argument(
"--vad",
action="store_true",
default=False,
help="Use VAD = voice activity detection, with the default parameters.",
)
parser.add_argument(
"--buffer_trimming",
type=str,
default="segment",
choices=["sentence", "segment"],
help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.',
)
parser.add_argument(
"--buffer_trimming_sec",
type=float,
default=15,
help="Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.",
)
parser.add_argument(
"-l",
"--log-level",
dest="log_level",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Set the log level",
default="DEBUG",
)
def backend_factory(args):
backend = args.backend
if backend == "openai-api":
logger.debug("Using OpenAI API.")
asr = OpenaiApiASR(lan=args.lan)
else:
if backend == "faster-whisper":
asr_cls = FasterWhisperASR
elif backend == "mlx-whisper":
asr_cls = MLXWhisper
else:
asr_cls = WhisperTimestampedASR
# Only for FasterWhisperASR and WhisperTimestampedASR
size = args.model
t = time.time()
logger.info(f"Loading Whisper {size} model for {args.lan}...")
asr = asr_cls(
modelsize=size,
lan=args.lan,
cache_dir=args.model_cache_dir,
model_dir=args.model_dir,
)
e = time.time()
logger.info(f"done. It took {round(e-t,2)} seconds.")
# Apply common configurations
if getattr(args, "vad", False): # Checks if VAD argument is present and True
logger.info("Setting VAD filter")
asr.use_vad()
language = args.lan
if args.task == "translate":
asr.set_translate_task()
tgt_language = "en" # Whisper translates into English
else:
tgt_language = language # Whisper transcribes in this language
# Create the tokenizer
if args.buffer_trimming == "sentence":
tokenizer = create_tokenizer(tgt_language)
else:
tokenizer = None
return asr, tokenizer
def online_factory(args, asr, tokenizer, logfile=sys.stderr):
if args.vac:
online = VACOnlineASRProcessor(
args.min_chunk_size,
asr,
tokenizer,
logfile=logfile,
buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec),
)
else:
online = OnlineASRProcessor(
asr,
tokenizer,
logfile=logfile,
buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec),
)
return online
def asr_factory(args, logfile=sys.stderr):
"""
Creates and configures an ASR and ASR Online instance based on the specified backend and arguments.
"""
asr, tokenizer = backend_factory(args)
online = online_factory(args, asr, tokenizer, logfile=logfile)
return asr, online
def set_logging(args, logger, others=[]):
logging.basicConfig(format="%(levelname)s\t%(message)s") # format='%(name)s
logger.setLevel(args.log_level)
for other in others:
logging.getLogger(other).setLevel(args.log_level)
# logging.getLogger("whisper_online_server").setLevel(args.log_level)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--audio_path",
type=str,
default='samples_jfk.wav',
help="Filename of 16kHz mono channel wav, on which live streaming is simulated.",
)
add_shared_args(parser)
parser.add_argument(
"--start_at",
type=float,
default=0.0,
help="Start processing audio at this time.",
)
parser.add_argument(
"--offline", action="store_true", default=False, help="Offline mode."
)
parser.add_argument(
"--comp_unaware",
action="store_true",
default=False,
help="Computationally unaware simulation.",
)
args = parser.parse_args()
# reset to store stderr to different file stream, e.g. open(os.devnull,"w")
logfile = None # sys.stderr
if args.offline and args.comp_unaware:
logger.error(
"No or one option from --offline and --comp_unaware are available, not both. Exiting."
)
sys.exit(1)
# if args.log_level:
# logging.basicConfig(format='whisper-%(levelname)s:%(name)s: %(message)s',
# level=getattr(logging, args.log_level))
set_logging(args, logger,others=["src.whisper_streaming.online_asr"])
audio_path = args.audio_path
SAMPLING_RATE = 16000
duration = len(load_audio(audio_path)) / SAMPLING_RATE
logger.info("Audio duration is: %2.2f seconds" % duration)
asr, online = asr_factory(args, logfile=logfile)
if args.vac:
min_chunk = args.vac_chunk_size
else:
min_chunk = args.min_chunk_size
# load the audio into the LRU cache before we start the timer
a = load_audio_chunk(audio_path, 0, 1)
# warm up the ASR because the very first transcribe takes much more time than the other
asr.transcribe(a)
beg = args.start_at
start = time.time() - beg
def output_transcript(o, now=None):
# output format in stdout is like:
# 4186.3606 0 1720 Takhle to je
# - the first three words are:
# - emission time from beginning of processing, in milliseconds
# - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
# - the next words: segment transcript
if now is None:
now = time.time() - start
if o[0] is not None:
log_string = f"{now*1000:1.0f}, {o[0]*1000:1.0f}-{o[1]*1000:1.0f} ({(now-o[1]):+1.0f}s): {o[2]}"
logger.debug(
log_string
)
if logfile is not None:
print(
log_string,
file=logfile,
flush=True,
)
else:
# No text, so no output
pass
if args.offline: ## offline mode processing (for testing/debugging)
a = load_audio(audio_path)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {repr(e)}")
else:
output_transcript(o)
now = None
elif args.comp_unaware: # computational unaware mode
end = beg + min_chunk
while True:
a = load_audio_chunk(audio_path, beg, end)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {repr(e)}")
pass
else:
output_transcript(o, now=end)
logger.debug(f"## last processed {end:.2f}s")
if end >= duration:
break
beg = end
if end + min_chunk > duration:
end = duration
else:
end += min_chunk
now = duration
else: # online = simultaneous mode
end = 0
while True:
now = time.time() - start
if now < end + min_chunk:
time.sleep(min_chunk + end - now)
end = time.time() - start
a = load_audio_chunk(audio_path, beg, end)
beg = end
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {e}")
pass
else:
output_transcript(o)
now = time.time() - start
logger.debug(
f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}"
)
if end >= duration:
break
now = None
o = online.finish()
output_transcript(o, now=now)