File size: 13,099 Bytes
37fc0f3 13fd21a 37fc0f3 380c30d cc68f3b 33369a9 97a4ebd 33369a9 5fdb08e e1b0e14 37fc0f3 4405c45 37fc0f3 5fdb08e 37fc0f3 5fdb08e 37fc0f3 5fdb08e 14c2bbe 37fc0f3 2625be1 4a51e13 5fdb08e 4a51e13 2625be1 5fdb08e 2625be1 5fdb08e 2625be1 4a51e13 5fdb08e 937fc50 5fdb08e 937fc50 4a51e13 5fdb08e 937fc50 5fdb08e 4a51e13 5fdb08e 4a51e13 5fdb08e 4a51e13 5fdb08e 4a51e13 aa51e39 5fdb08e cc68f3b 5fdb08e cc68f3b 5fdb08e cc68f3b 5fdb08e cc68f3b 5fdb08e aa0ba59 8896389 97a4ebd 8896389 87cab7c 8896389 b50f687 5fdb08e 8896389 b50f687 8896389 5fdb08e 97a4ebd 8896389 bccbb15 937fc50 bccbb15 aa0ba59 8896389 aa0ba59 14c2bbe 5fdb08e 14c2bbe 5fdb08e aa0ba59 bccbb15 b50f687 dd2f0f0 5fdb08e b50f687 dd2f0f0 b50f687 8116b21 5fdb08e 37fc0f3 88dc796 5fdb08e 88dc796 5fdb08e f884d11 5fdb08e f884d11 5fdb08e aa51e39 5fdb08e 88dc796 8f32dea dd2f0f0 8f32dea a1ba5e6 5fdb08e a1ba5e6 5fdb08e b50f687 dd2f0f0 8060d45 88dc796 5fdb08e 97a4ebd 88dc796 bccbb15 14c2bbe b1878ce 88dc796 5fdb08e 88dc796 e0f5d42 88dc796 5fdb08e 88dc796 a1ba5e6 88dc796 a1ba5e6 5fdb08e 88dc796 944f370 5fdb08e 944f370 88dc796 a7cb7a5 88dc796 5fdb08e 88dc796 b1878ce 380c30d 7bca7a2 b1878ce a1ba5e6 5fdb08e a1ba5e6 5fdb08e a1ba5e6 380c30d 97a4ebd a1ba5e6 97a4ebd a1ba5e6 5fdb08e 2b98af7 5fdb08e 2b98af7 a1ba5e6 5fdb08e 88dc796 5fdb08e 88dc796 5fdb08e 88dc796 380c30d 97a4ebd 88dc796 5fdb08e 37fc0f3 88dc796 a1ba5e6 37fc0f3 88dc796 a1ba5e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
#!/usr/bin/env python3
import sys
import numpy as np
import librosa
from functools import lru_cache
import time
import logging
from src.whisper_streaming.backends import FasterWhisperASR, MLXWhisper, WhisperTimestampedASR, OpenaiApiASR
from src.whisper_streaming.online_asr import OnlineASRProcessor, VACOnlineASRProcessor
logger = logging.getLogger(__name__)
@lru_cache(10**6)
def load_audio(fname):
a, _ = librosa.load(fname, sr=16000, dtype=np.float32)
return a
def load_audio_chunk(fname, beg, end):
audio = load_audio(fname)
beg_s = int(beg * 16000)
end_s = int(end * 16000)
return audio[beg_s:end_s]
WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(
","
)
def create_tokenizer(lan):
"""returns an object that has split function that works like the one of MosesTokenizer"""
assert (
lan in WHISPER_LANG_CODES
), "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES)
if lan == "uk":
import tokenize_uk
class UkrainianTokenizer:
def split(self, text):
return tokenize_uk.tokenize_sents(text)
return UkrainianTokenizer()
# supported by fast-mosestokenizer
if (
lan
in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split()
):
from mosestokenizer import MosesSentenceSplitter
return MosesSentenceSplitter(lan)
# the following languages are in Whisper, but not in wtpsplit:
if (
lan
in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split()
):
logger.debug(
f"{lan} code is not supported by wtpsplit. Going to use None lang_code option."
)
lan = None
from wtpsplit import WtP
# downloads the model from huggingface on the first use
wtp = WtP("wtp-canine-s-12l-no-adapters")
class WtPtok:
def split(self, sent):
return wtp.split(sent, lang_code=lan)
return WtPtok()
def add_shared_args(parser):
"""shared args for simulation (this entry point) and server
parser: argparse.ArgumentParser object
"""
parser.add_argument(
"--min-chunk-size",
type=float,
default=1.0,
help="Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.",
)
parser.add_argument(
"--model",
type=str,
default="large-v3-turbo",
choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large,large-v3-turbo".split(
","
),
help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.",
)
parser.add_argument(
"--model_cache_dir",
type=str,
default=None,
help="Overriding the default model cache dir where models downloaded from the hub are saved",
)
parser.add_argument(
"--model_dir",
type=str,
default=None,
help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.",
)
parser.add_argument(
"--lan",
"--language",
type=str,
default="auto",
help="Source language code, e.g. en,de,cs, or 'auto' for language detection.",
)
parser.add_argument(
"--task",
type=str,
default="transcribe",
choices=["transcribe", "translate"],
help="Transcribe or translate.",
)
parser.add_argument(
"--backend",
type=str,
default="faster-whisper",
choices=["faster-whisper", "whisper_timestamped", "mlx-whisper", "openai-api"],
help="Load only this backend for Whisper processing.",
)
parser.add_argument(
"--vac",
action="store_true",
default=False,
help="Use VAC = voice activity controller. Recommended. Requires torch.",
)
parser.add_argument(
"--vac-chunk-size", type=float, default=0.04, help="VAC sample size in seconds."
)
parser.add_argument(
"--vad",
action="store_true",
default=False,
help="Use VAD = voice activity detection, with the default parameters.",
)
parser.add_argument(
"--buffer_trimming",
type=str,
default="segment",
choices=["sentence", "segment"],
help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.',
)
parser.add_argument(
"--buffer_trimming_sec",
type=float,
default=15,
help="Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.",
)
parser.add_argument(
"-l",
"--log-level",
dest="log_level",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Set the log level",
default="DEBUG",
)
def backend_factory(args):
backend = args.backend
if backend == "openai-api":
logger.debug("Using OpenAI API.")
asr = OpenaiApiASR(lan=args.lan)
else:
if backend == "faster-whisper":
asr_cls = FasterWhisperASR
elif backend == "mlx-whisper":
asr_cls = MLXWhisper
else:
asr_cls = WhisperTimestampedASR
# Only for FasterWhisperASR and WhisperTimestampedASR
size = args.model
t = time.time()
logger.info(f"Loading Whisper {size} model for {args.lan}...")
asr = asr_cls(
modelsize=size,
lan=args.lan,
cache_dir=args.model_cache_dir,
model_dir=args.model_dir,
)
e = time.time()
logger.info(f"done. It took {round(e-t,2)} seconds.")
# Apply common configurations
if getattr(args, "vad", False): # Checks if VAD argument is present and True
logger.info("Setting VAD filter")
asr.use_vad()
language = args.lan
if args.task == "translate":
asr.set_translate_task()
tgt_language = "en" # Whisper translates into English
else:
tgt_language = language # Whisper transcribes in this language
# Create the tokenizer
if args.buffer_trimming == "sentence":
tokenizer = create_tokenizer(tgt_language)
else:
tokenizer = None
return asr, tokenizer
def online_factory(args, asr, tokenizer, logfile=sys.stderr):
if args.vac:
online = VACOnlineASRProcessor(
args.min_chunk_size,
asr,
tokenizer,
logfile=logfile,
buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec),
)
else:
online = OnlineASRProcessor(
asr,
tokenizer,
logfile=logfile,
buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec),
)
return online
def asr_factory(args, logfile=sys.stderr):
"""
Creates and configures an ASR and ASR Online instance based on the specified backend and arguments.
"""
asr, tokenizer = backend_factory(args)
online = online_factory(args, asr, tokenizer, logfile=logfile)
return asr, online
def set_logging(args, logger, others=[]):
logging.basicConfig(format="%(levelname)s\t%(message)s") # format='%(name)s
logger.setLevel(args.log_level)
for other in others:
logging.getLogger(other).setLevel(args.log_level)
# logging.getLogger("whisper_online_server").setLevel(args.log_level)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"--audio_path",
type=str,
default='samples_jfk.wav',
help="Filename of 16kHz mono channel wav, on which live streaming is simulated.",
)
add_shared_args(parser)
parser.add_argument(
"--start_at",
type=float,
default=0.0,
help="Start processing audio at this time.",
)
parser.add_argument(
"--offline", action="store_true", default=False, help="Offline mode."
)
parser.add_argument(
"--comp_unaware",
action="store_true",
default=False,
help="Computationally unaware simulation.",
)
args = parser.parse_args()
# reset to store stderr to different file stream, e.g. open(os.devnull,"w")
logfile = None # sys.stderr
if args.offline and args.comp_unaware:
logger.error(
"No or one option from --offline and --comp_unaware are available, not both. Exiting."
)
sys.exit(1)
# if args.log_level:
# logging.basicConfig(format='whisper-%(levelname)s:%(name)s: %(message)s',
# level=getattr(logging, args.log_level))
set_logging(args, logger,others=["src.whisper_streaming.online_asr"])
audio_path = args.audio_path
SAMPLING_RATE = 16000
duration = len(load_audio(audio_path)) / SAMPLING_RATE
logger.info("Audio duration is: %2.2f seconds" % duration)
asr, online = asr_factory(args, logfile=logfile)
if args.vac:
min_chunk = args.vac_chunk_size
else:
min_chunk = args.min_chunk_size
# load the audio into the LRU cache before we start the timer
a = load_audio_chunk(audio_path, 0, 1)
# warm up the ASR because the very first transcribe takes much more time than the other
asr.transcribe(a)
beg = args.start_at
start = time.time() - beg
def output_transcript(o, now=None):
# output format in stdout is like:
# 4186.3606 0 1720 Takhle to je
# - the first three words are:
# - emission time from beginning of processing, in milliseconds
# - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
# - the next words: segment transcript
if now is None:
now = time.time() - start
if o[0] is not None:
log_string = f"{now*1000:1.0f}, {o[0]*1000:1.0f}-{o[1]*1000:1.0f} ({(now-o[1]):+1.0f}s): {o[2]}"
logger.debug(
log_string
)
if logfile is not None:
print(
log_string,
file=logfile,
flush=True,
)
else:
# No text, so no output
pass
if args.offline: ## offline mode processing (for testing/debugging)
a = load_audio(audio_path)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {repr(e)}")
else:
output_transcript(o)
now = None
elif args.comp_unaware: # computational unaware mode
end = beg + min_chunk
while True:
a = load_audio_chunk(audio_path, beg, end)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {repr(e)}")
pass
else:
output_transcript(o, now=end)
logger.debug(f"## last processed {end:.2f}s")
if end >= duration:
break
beg = end
if end + min_chunk > duration:
end = duration
else:
end += min_chunk
now = duration
else: # online = simultaneous mode
end = 0
while True:
now = time.time() - start
if now < end + min_chunk:
time.sleep(min_chunk + end - now)
end = time.time() - start
a = load_audio_chunk(audio_path, beg, end)
beg = end
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError as e:
logger.error(f"assertion error: {e}")
pass
else:
output_transcript(o)
now = time.time() - start
logger.debug(
f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}"
)
if end >= duration:
break
now = None
o = online.finish()
output_transcript(o, now=now)
|