Tijs Zwinkels commited on
Commit
ab27bfb
·
1 Parent(s): c30969f

Update documentation to include openai-api backend

Browse files
Files changed (1) hide show
  1. README.md +9 -4
README.md CHANGED
@@ -31,14 +31,19 @@ Please, cite us. [Bibtex citation](http://www.afnlp.org/conferences/ijcnlp2023/p
31
 
32
  ## Installation
33
 
34
- 1) ``pip install librosa`` -- audio processing library
35
 
36
  2) Whisper backend.
37
 
38
- Two alternative backends are integrated. The most recommended one is [faster-whisper](https://github.com/guillaumekln/faster-whisper) with GPU support. Follow their instructions for NVIDIA libraries -- we succeeded with CUDNN 8.5.0 and CUDA 11.7. Install with `pip install faster-whisper`.
39
 
40
  Alternative, less restrictive, but slower backend is [whisper-timestamped](https://github.com/linto-ai/whisper-timestamped): `pip install git+https://github.com/linto-ai/whisper-timestamped`
41
 
 
 
 
 
 
42
  The backend is loaded only when chosen. The unused one does not have to be installed.
43
 
44
  3) Optional, not recommended: sentence segmenter (aka sentence tokenizer)
@@ -69,7 +74,7 @@ In case of installation issues of opus-fast-mosestokenizer, especially on Window
69
 
70
  ```
71
  usage: whisper_online.py [-h] [--min-chunk-size MIN_CHUNK_SIZE] [--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large}] [--model_cache_dir MODEL_CACHE_DIR] [--model_dir MODEL_DIR] [--lan LAN] [--task {transcribe,translate}]
72
- [--backend {faster-whisper,whisper_timestamped}] [--vad] [--buffer_trimming {sentence,segment}] [--buffer_trimming_sec BUFFER_TRIMMING_SEC] [--start_at START_AT] [--offline] [--comp_unaware]
73
  audio_path
74
 
75
  positional arguments:
@@ -89,7 +94,7 @@ options:
89
  Language code for transcription, e.g. en,de,cs.
90
  --task {transcribe,translate}
91
  Transcribe or translate.
92
- --backend {faster-whisper,whisper_timestamped}
93
  Load only this backend for Whisper processing.
94
  --vad Use VAD = voice activity detection, with the default parameters.
95
  --buffer_trimming {sentence,segment}
 
31
 
32
  ## Installation
33
 
34
+ 1) ``pip install librosa soundfile`` -- audio processing library
35
 
36
  2) Whisper backend.
37
 
38
+ Several alternative backends are integrated. The most recommended one is [faster-whisper](https://github.com/guillaumekln/faster-whisper) with GPU support. Follow their instructions for NVIDIA libraries -- we succeeded with CUDNN 8.5.0 and CUDA 11.7. Install with `pip install faster-whisper`.
39
 
40
  Alternative, less restrictive, but slower backend is [whisper-timestamped](https://github.com/linto-ai/whisper-timestamped): `pip install git+https://github.com/linto-ai/whisper-timestamped`
41
 
42
+ Thirdly, it's also possible to run this software from the [OpenAI Whisper API](https://platform.openai.com/docs/api-reference/audio/createTranscription). This solution is fast and requires no GPU, just a small VM will suffice, but you will need to pay OpenAI for api access. Also note that, since each audio fragment is processed multiple times, the [price](https://openai.com/pricing) will be higher than obvious from the pricing page, so keep an eye on costs while using. Setting a higher chunk-size will reduce costs significantly.
43
+ Install with: `pip install openai`
44
+
45
+ For running with the openai-api backend, make sure that your [OpenAI api key](https://platform.openai.com/api-keys) is set in the `OPENAI_API_KEY` environment variable. For example, before running, do: `export OPENAI_API_KEY=sk-xxx` with *sk-xxx* replaced with your api key.
46
+
47
  The backend is loaded only when chosen. The unused one does not have to be installed.
48
 
49
  3) Optional, not recommended: sentence segmenter (aka sentence tokenizer)
 
74
 
75
  ```
76
  usage: whisper_online.py [-h] [--min-chunk-size MIN_CHUNK_SIZE] [--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large}] [--model_cache_dir MODEL_CACHE_DIR] [--model_dir MODEL_DIR] [--lan LAN] [--task {transcribe,translate}]
77
+ [--backend {faster-whisper,whisper_timestamped,openai-api}] [--vad] [--buffer_trimming {sentence,segment}] [--buffer_trimming_sec BUFFER_TRIMMING_SEC] [--start_at START_AT] [--offline] [--comp_unaware]
78
  audio_path
79
 
80
  positional arguments:
 
94
  Language code for transcription, e.g. en,de,cs.
95
  --task {transcribe,translate}
96
  Transcribe or translate.
97
+ --backend {faster-whisper,whisper_timestamped,openai-api}
98
  Load only this backend for Whisper processing.
99
  --vad Use VAD = voice activity detection, with the default parameters.
100
  --buffer_trimming {sentence,segment}