Dominik Macháček commited on
Commit
d543411
·
1 Parent(s): b2e4e9f

VAC controller integrated

Browse files
Files changed (2) hide show
  1. voice_activity_controller.py +31 -23
  2. whisper_online_vac.py +209 -0
voice_activity_controller.py CHANGED
@@ -51,8 +51,12 @@ class VoiceActivityController:
51
  self.temp_end = 0
52
  self.current_sample = 0
53
 
 
 
 
54
  def apply_vad(self, audio):
55
- x = int2float(audio)
 
56
  if not torch.is_tensor(x):
57
  try:
58
  x = torch.Tensor(x)
@@ -79,38 +83,42 @@ class VoiceActivityController:
79
  return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0, window_size_samples
80
 
81
 
 
 
 
 
82
 
 
 
 
 
83
 
84
 
85
- def detect_user_speech(self, audio_stream, audio_in_int16 = False):
86
- last_silence_len= 0
87
- speech_len = 0
 
 
88
 
89
- for data in audio_stream: # replace with your condition of choice
90
-
91
-
92
- audio_block = np.frombuffer(data, dtype=np.int16) if not audio_in_int16 else data
93
- wav = audio_block
94
-
95
- is_final = False
96
- voice_audio, speech_in_wav, last_silent_in_wav = self.apply_vad(wav)
97
 
 
 
 
98
 
99
- if speech_in_wav > 0 :
100
- last_silence_len= 0
101
- speech_len += speech_in_wav
102
- if self.activity_detected_callback is not None:
103
- self.activity_detected_callback()
104
 
105
- last_silence_len += last_silent_in_wav
106
- if last_silence_len>= self.final_silence_limit and speech_len >= self.final_speech_limit:
107
 
108
- is_final = True
109
- last_silence_len= 0
110
- speech_len = 0
111
 
112
- yield voice_audio.tobytes(), is_final
 
 
113
 
 
 
 
114
 
115
 
116
 
 
51
  self.temp_end = 0
52
  self.current_sample = 0
53
 
54
+ self.last_silence_len= 0
55
+ self.speech_len = 0
56
+
57
  def apply_vad(self, audio):
58
+ # x = int2float(audio)
59
+ x = audio
60
  if not torch.is_tensor(x):
61
  try:
62
  x = torch.Tensor(x)
 
83
  return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0, window_size_samples
84
 
85
 
86
+ def detect_speech_iter(self, data, audio_in_int16 = False):
87
+ # audio_block = np.frombuffer(data, dtype=np.int16) if not audio_in_int16 else data
88
+ audio_block = data
89
+ wav = audio_block
90
 
91
+ print(wav, len(wav), type(wav), wav.dtype)
92
+
93
+ is_final = False
94
+ voice_audio, speech_in_wav, last_silent_in_wav = self.apply_vad(wav)
95
 
96
 
97
+ if speech_in_wav > 0 :
98
+ self.last_silence_len= 0
99
+ self.speech_len += speech_in_wav
100
+ # if self.activity_detected_callback is not None:
101
+ # self.activity_detected_callback()
102
 
103
+ self.last_silence_len += last_silent_in_wav
104
+ if self.last_silence_len>= self.final_silence_limit and self.speech_len >= self.final_speech_limit:
 
 
 
 
 
 
105
 
106
+ is_final = True
107
+ self.last_silence_len= 0
108
+ self.speech_len = 0
109
 
110
+ # return voice_audio.tobytes(), is_final
111
+ return voice_audio, is_final
 
 
 
112
 
 
 
113
 
 
 
 
114
 
115
+ def detect_user_speech(self, audio_stream, audio_in_int16 = False):
116
+ self.last_silence_len= 0
117
+ self.speech_len = 0
118
 
119
+ for data in audio_stream: # replace with your condition of choice
120
+ yield self.detect_speech_iter(data, audio_in_int16)
121
+
122
 
123
 
124
 
whisper_online_vac.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from whisper_online import *
2
+ from voice_activity_controller import *
3
+ import soundfile
4
+ import io
5
+
6
+ SAMPLING_RATE = 16000
7
+
8
+ class VACOnlineASRProcessor(OnlineASRProcessor):
9
+
10
+ def __init__(self, *a, **kw):
11
+ self.online = OnlineASRProcessor(*a, **kw)
12
+ self.vac = VoiceActivityController(use_vad_result = True)
13
+
14
+ self.is_currently_final = False
15
+ self.logfile = self.online.logfile
16
+
17
+ #self.vac_buffer = io.BytesIO()
18
+ #self.vac_stream = self.vac.detect_user_speech(self.vac_buffer, audio_in_int16=False)
19
+
20
+ self.audio_log = open("audio_log.wav","wb")
21
+
22
+ def init(self):
23
+ self.online.init()
24
+ self.vac.reset_states()
25
+
26
+ def insert_audio_chunk(self, audio):
27
+ print(audio, len(audio), type(audio), audio.dtype)
28
+ r = self.vac.detect_speech_iter(audio,audio_in_int16=False)
29
+ raw_bytes, is_final = r
30
+ print("is_final",is_final)
31
+ print("raw_bytes", raw_bytes[:10], len(raw_bytes), type(raw_bytes))
32
+ # self.audio_log.write(raw_bytes)
33
+ #sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
34
+ #audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
35
+ audio = raw_bytes
36
+ print("po překonvertování", audio, len(audio), type(audio), audio.dtype)
37
+ self.is_currently_final = is_final
38
+ self.online.insert_audio_chunk(audio)
39
+ # self.audio_log.write(audio)
40
+ self.audio_log.flush()
41
+
42
+ print("inserted",file=self.logfile)
43
+
44
+ def process_iter(self):
45
+ if self.is_currently_final:
46
+ return self.finish()
47
+ else:
48
+ print(self.online.audio_buffer)
49
+ ret = self.online.process_iter()
50
+ print("tady",file=self.logfile)
51
+ return ret
52
+
53
+ def finish(self):
54
+ ret = self.online.finish()
55
+ self.online.init()
56
+ return ret
57
+
58
+
59
+
60
+
61
+ if __name__ == "__main__":
62
+
63
+ import argparse
64
+ parser = argparse.ArgumentParser()
65
+ parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.")
66
+ add_shared_args(parser)
67
+ parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
68
+ parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
69
+ parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.')
70
+
71
+ args = parser.parse_args()
72
+
73
+ # reset to store stderr to different file stream, e.g. open(os.devnull,"w")
74
+ logfile = sys.stderr
75
+
76
+ if args.offline and args.comp_unaware:
77
+ print("No or one option from --offline and --comp_unaware are available, not both. Exiting.",file=logfile)
78
+ sys.exit(1)
79
+
80
+ audio_path = args.audio_path
81
+
82
+ SAMPLING_RATE = 16000
83
+ duration = len(load_audio(audio_path))/SAMPLING_RATE
84
+ print("Audio duration is: %2.2f seconds" % duration, file=logfile)
85
+
86
+ size = args.model
87
+ language = args.lan
88
+
89
+ t = time.time()
90
+ print(f"Loading Whisper {size} model for {language}...",file=logfile,end=" ",flush=True)
91
+
92
+ if args.backend == "faster-whisper":
93
+ asr_cls = FasterWhisperASR
94
+ else:
95
+ asr_cls = WhisperTimestampedASR
96
+
97
+ asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
98
+
99
+ if args.task == "translate":
100
+ asr.set_translate_task()
101
+ tgt_language = "en" # Whisper translates into English
102
+ else:
103
+ tgt_language = language # Whisper transcribes in this language
104
+
105
+
106
+ e = time.time()
107
+ print(f"done. It took {round(e-t,2)} seconds.",file=logfile)
108
+
109
+ if args.vad:
110
+ print("setting VAD filter",file=logfile)
111
+ asr.use_vad()
112
+
113
+
114
+ min_chunk = args.min_chunk_size
115
+ if args.buffer_trimming == "sentence":
116
+ tokenizer = create_tokenizer(tgt_language)
117
+ else:
118
+ tokenizer = None
119
+ online = VACOnlineASRProcessor(asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
120
+
121
+
122
+ # load the audio into the LRU cache before we start the timer
123
+ a = load_audio_chunk(audio_path,0,1)
124
+
125
+ # warm up the ASR, because the very first transcribe takes much more time than the other
126
+ asr.transcribe(a)
127
+
128
+ beg = args.start_at
129
+ start = time.time()-beg
130
+
131
+ def output_transcript(o, now=None):
132
+ # output format in stdout is like:
133
+ # 4186.3606 0 1720 Takhle to je
134
+ # - the first three words are:
135
+ # - emission time from beginning of processing, in milliseconds
136
+ # - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
137
+ # - the next words: segment transcript
138
+ if now is None:
139
+ now = time.time()-start
140
+ if o[0] is not None:
141
+ print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),file=logfile,flush=True)
142
+ print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
143
+ else:
144
+ print(o,file=logfile,flush=True)
145
+
146
+ if args.offline: ## offline mode processing (for testing/debugging)
147
+ a = load_audio(audio_path)
148
+ online.insert_audio_chunk(a)
149
+ try:
150
+ o = online.process_iter()
151
+ except AssertionError:
152
+ print("assertion error",file=logfile)
153
+ pass
154
+ else:
155
+ output_transcript(o)
156
+ now = None
157
+ elif args.comp_unaware: # computational unaware mode
158
+ end = beg + min_chunk
159
+ while True:
160
+ a = load_audio_chunk(audio_path,beg,end)
161
+ online.insert_audio_chunk(a)
162
+ try:
163
+ o = online.process_iter()
164
+ except AssertionError:
165
+ print("assertion error",file=logfile)
166
+ pass
167
+ else:
168
+ output_transcript(o, now=end)
169
+
170
+ print(f"## last processed {end:.2f}s",file=logfile,flush=True)
171
+
172
+ if end >= duration:
173
+ break
174
+
175
+ beg = end
176
+
177
+ if end + min_chunk > duration:
178
+ end = duration
179
+ else:
180
+ end += min_chunk
181
+ now = duration
182
+
183
+ else: # online = simultaneous mode
184
+ end = 0
185
+ while True:
186
+ now = time.time() - start
187
+ if now < end+min_chunk:
188
+ time.sleep(min_chunk+end-now)
189
+ end = time.time() - start
190
+ a = load_audio_chunk(audio_path,beg,end)
191
+ beg = end
192
+ online.insert_audio_chunk(a)
193
+
194
+ try:
195
+ o = online.process_iter()
196
+ except AssertionError:
197
+ print("assertion error",file=logfile)
198
+ pass
199
+ else:
200
+ output_transcript(o)
201
+ now = time.time() - start
202
+ print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=logfile,flush=True)
203
+
204
+ if end >= duration:
205
+ break
206
+ now = None
207
+
208
+ o = online.finish()
209
+ output_transcript(o, now=now)