File size: 10,614 Bytes
4d6e8c2 945b47e aa215e9 d195db5 0f3f04a 4d6e8c2 0f3f04a 4d6e8c2 d195db5 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 d195db5 70f5f26 4d6e8c2 1c1e26c 4d6e8c2 1c1e26c d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 0f3f04a d195db5 945b47e 0f3f04a 945b47e 4d6e8c2 0f3f04a d195db5 70f5f26 4d6e8c2 d195db5 0f3f04a 70f5f26 4d6e8c2 d195db5 4d6e8c2 d195db5 0f3f04a d195db5 0f3f04a d195db5 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import pandas as pd
import tensorflow as tf
from transformers import DistilBertTokenizer
from transformers import TFDistilBertForSequenceClassification
from transformers import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
router = APIRouter()
DESCRIPTION = "DistilBert classification"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: DistilBert classification
- DistilBert classification predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
train_dataset = train_test["train"]
y_train=train_dataset['label']
train_dataset = train_test["train"]
tn=pd.DataFrame([(i, j, k) for i,j,k in zip(train_dataset["quote"] , train_dataset["source"],
train_dataset["subsource"])], columns=['quote','source', 'subsource'])
test_dataset = train_test["test"]
tt=pd.DataFrame([(i, j, k) for i,j,k in zip(test_dataset["quote"] , test_dataset["source"],
test_dataset["subsource"])], columns=['quote','source', 'subsource'])
tt.fillna("",inplace=True)
tn.fillna("",inplace=True)
tn['text'] = tn[['quote', 'source','subsource']].agg(' '.join, axis=1)
tt['text'] = tn[['quote', 'source','subsource']].agg(' '.join, axis=1)
def clean_text(x):
pattern = r'[^a-zA-z0-9\s]'
text = re.sub(pattern, '', x)
return x
def clean_numbers(x):
if bool(re.search(r'\d', x)):
x = re.sub('[0-9]{5,}', '#####', x)
x = re.sub('[0-9]{4}', '####', x)
x = re.sub('[0-9]{3}', '###', x)
x = re.sub('[0-9]{2}', '##', x)
return x
contraction_dict = {"ain't": "is not", "aren't": "are not","can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not", "he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am", "I've": "I have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have","it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have","mightn't": "might not","mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have","o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have","so's": "so as", "this's": "this is","that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all are","y'all've": "you all have","you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have"}
def _get_contractions(contraction_dict):
contraction_re = re.compile('(%s)' % '|'.join(contraction_dict.keys()))
return contraction_dict, contraction_re
contractions, contractions_re = _get_contractions(contraction_dict)
def replace_contractions(text):
def replace(match):
return contractions[match.group(0)]
return contractions_re.sub(replace, text)
train_dataset_df = tn['quote'].apply(lambda x: x.lower())
test_dataset_df = tt['quote'].apply(lambda x: x.lower())
# Clean the text
train_dataset_df = train_dataset_df.apply(lambda x: clean_text(x))
test_dataset_df= test_dataset_df.apply(lambda x: clean_text(x))
# Clean numbers
train_dataset_df= train_dataset_df.apply(lambda x: clean_numbers(x))
test_dataset_df = test_dataset_df.apply(lambda x: clean_numbers(x))
# Clean Contractions
train_dataset_df = train_dataset_df.apply(lambda x: replace_contractions(x))
test_dataset_df = test_dataset_df.apply(lambda x: replace_contractions(x))
# Encoding
y_train_df=pd.DataFrame(train_dataset['label'], columns=['label'])
y_test_df=pd.DataFrame(test_dataset['label'], columns=['label'])
y_train_encoded = y_train_df['label'].astype('category').cat.codes
y_test_encoded = y_test_df['label'].astype('category').cat.codes
train_labels = y_train_encoded.to_list()
test_labels=y_test_encoded.to_list()
# Tokenize
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
train_encodings = tokenizer(train_dataset_df.to_list(), truncation=True, padding=True)
val_encodings = tokenizer(test_dataset_df.to_list(), truncation=True, padding=True)
# Slicing
train_dataset_bert = tf.data.Dataset.from_tensor_slices((
dict(train_encodings),
train_labels
))
val_dataset_bert = tf.data.Dataset.from_tensor_slices((
dict(val_encodings),
test_labels
))
model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=8)
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5, epsilon=1e-08)
model.compile(optimizer=optimizer, loss=model.hf_compute_loss, metrics=['accuracy'])
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make predictions (placeholder for actual model inference)
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)
model.fit(train_dataset_bert.shuffle(1000).batch(16),epochs=2,batch_size=16,validation_data=val_dataset_bert.shuffle(1000).batch(16),callbacks=[early_stopping])
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
def predict_category(text):
predict_input =tokenizer.encode(text,
truncation=True,
padding=True,
return_tensors="tf")
output = model(predict_input)[0]
prediction_value = tf.argmax(output, axis=1).numpy()[0]
return prediction_value
#β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β-β- -
y_pred = []
for text_ in test_dataset_df.to_list():
y_pred.append(predict_category(text_))
accuracy_score(test_labels, y_pred)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results |