File size: 18,638 Bytes
c73a79b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import streamlit as st
import json
import numpy as np
import joblib
from collections import defaultdict
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
import torch
import re
from typing import List, Dict, Any
from openai import OpenAI
from dotenv import load_dotenv
import os
from sentence_transformers import SentenceTransformer
from rdflib import Graph, Namespace, URIRef, Literal, RDF, RDFS, XSD
import os
import networkx as nx
from pyvis.network import Network
import streamlit.components.v1 as components
# ---------------------------
# LegalBERT-based compliance checker
# ---------------------------
class GDPRComplianceChecker:
def __init__(self, model_name="nlpaueb/bert-base-uncased-eurlex"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(self.device).eval()
def get_embeddings(self, texts):
embeddings = []
for text in texts:
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
output = self.model(**inputs)
embedding = output.last_hidden_state[:, 0, :].cpu().numpy()
embeddings.append(embedding[0])
return np.array(embeddings)
def chunk_policy_text(self, text, chunk_size=500):
paragraphs = re.split(r'\n{2,}|\.\s+', text)
chunks, current = [], ""
for para in paragraphs:
if len(current) + len(para) < chunk_size:
current += " " + para
else:
chunks.append(current.strip())
current = para
if current:
chunks.append(current.strip())
return [chunk for chunk in chunks if len(chunk) > 50]
def load_gdpr_articles(self, gdpr_json):
gdpr_map, texts = {}, []
for article in gdpr_json:
number, title = article["article_number"], article["article_title"]
body = " ".join([f"{k} {v}" for sec in article["sections"] for k, v in sec.items()])
full_text = f"Article {number}: {title}. {body}"
gdpr_map[number] = {"title": title, "text": full_text}
texts.append(full_text)
embeddings = self.get_embeddings(texts)
return gdpr_map, embeddings
def calculate_compliance_score(self, policy_text, gdpr_map, gdpr_embeddings):
chunks = self.chunk_policy_text(policy_text)
if not chunks:
return {"error": "Policy has no meaningful chunks."}
chunk_embeddings = self.get_embeddings(chunks)
sim_matrix = cosine_similarity(gdpr_embeddings, chunk_embeddings)
article_scores = {}
presence_threshold = 0.35
total_score, counted_articles = 0, 0
for i, (art_num, art_data) in enumerate(gdpr_map.items()):
max_sim = np.max(sim_matrix[i])
best_idx = np.argmax(sim_matrix[i])
if max_sim < presence_threshold:
continue
score_pct = min(100, max(0, (max_sim - presence_threshold) / (1 - presence_threshold) * 100))
article_scores[art_num] = {
"article_title": art_data["title"],
"compliance_percentage": round(score_pct, 2),
"similarity_score": round(max_sim, 4),
"matched_text_snippet": chunks[best_idx][:300] + "..."
}
total_score += score_pct
counted_articles += 1
overall = round(total_score / counted_articles, 2) if counted_articles else 0
return {
"overall_compliance_percentage": overall,
"relevant_articles_analyzed": counted_articles,
"total_policy_chunks": len(chunks),
"article_scores": article_scores
}
def chunk_policy_text(text, chunk_size=500):
import re
paragraphs = re.split(r'\n{2,}|\.\s+', text)
chunks, current = [], ""
for para in paragraphs:
if len(current) + len(para) < chunk_size:
current += " " + para
else:
chunks.append(current.strip())
current = para
if current:
chunks.append(current.strip())
return [chunk for chunk in chunks if len(chunk) > 50]
def prepare_article_text(article: Dict[str, Any]) -> str:
body = " ".join(
" ".join(sec.values()) if isinstance(sec, dict) else str(sec)
for sec in article.get("sections", [])
)
return f"Art. {article['article_number']} β {article['article_title']} {body}"
def get_embedding(text: str) -> List[float]:
# If input is a list of strings, clean each string
if isinstance(text, list):
cleaned_text = [t.replace("\n", " ") for t in text]
else: # single string
cleaned_text = text.replace("\n", " ")
resp = client.embeddings.create(model=EMBED_MODEL, input=cleaned_text)
if isinstance(cleaned_text, list):
return [item.embedding for item in resp.data]
else:
return resp.data[0].embedding
def rdflib_to_networkx(rdflib_graph):
nx_graph = nx.MultiDiGraph()
for s, p, o in rdflib_graph:
nx_graph.add_edge(str(s), str(o), label=str(p))
return nx_graph
def draw_pyvis_graph(nx_graph):
net = Network(height="600px", width="100%", directed=True, notebook=False)
net.from_nx(nx_graph)
net.repulsion(node_distance=200, central_gravity=0.33, spring_length=100, spring_strength=0.10, damping=0.95)
return net
# ---------------------------
# Streamlit interface
# ---------------------------
st.set_page_config(page_title="GDPR Compliance Checker", layout="wide")
st.title("π‘οΈ GDPR Compliance Checker")
with st.sidebar:
st.header("Upload Files")
gdpr_file = st.file_uploader("GDPR JSON File", type=["json"])
policy_file = st.file_uploader("Company Policy (.txt)", type=["txt"])
if gdpr_file and policy_file:
model_choice = st.selectbox(
"Choose the model to use:",
["Logistic Regression", "MultinomialNB", "LegalBERT (Eurlex)", "SentenceTransformer", "LLM Model", "Knowledge Graphs"]
)
gdpr_data = json.load(gdpr_file)
article_title_map = {f"Article {a['article_number']}": a['article_title'] for a in gdpr_data}
policy_text = policy_file.read().decode("utf-8")
with st.spinner("Analyzing..."):
if model_choice == "LegalBERT (Eurlex)":
checker = GDPRComplianceChecker()
gdpr_map, gdpr_embeddings = checker.load_gdpr_articles(gdpr_data)
result = checker.calculate_compliance_score(policy_text, gdpr_map, gdpr_embeddings)
elif model_choice in ["Logistic Regression", "MultinomialNB"]:
if model_choice == "Logistic Regression":
model = joblib.load("logistic_regression_model.joblib")
vectorizer = joblib.load("logistic_regression_vectorizer.joblib")
else:
model = joblib.load("multinomialNB_model.joblib")
vectorizer = joblib.load("multinomialNB_vectorizer.joblib")
chunks = chunk_policy_text(policy_text)
chunks = [c.strip() for c in chunks if len(c.strip()) > 40]
X_tfidf = vectorizer.transform(chunks)
y_pred = model.predict(X_tfidf)
y_proba = model.predict_proba(X_tfidf)
article_scores = defaultdict(lambda: {
"article_title": "",
"compliance_percentage": 0.0,
"similarity_score": 0.0,
"matched_text_snippet": ""
})
total_score = 0
counted_chunks = 0
for i, (label, prob_vector) in enumerate(zip(y_pred, y_proba)):
max_prob = max(prob_vector)
if max_prob >= 0.35:
score_pct = min(100.0, max(0.0, (max_prob - 0.35) / (1 - 0.35) * 100))
if score_pct > article_scores[label]["compliance_percentage"]:
article_scores[label]["compliance_percentage"] = score_pct
article_scores[label]["similarity_score"] = round(max_prob, 4)
article_scores[label]["matched_text_snippet"] = chunks[i][:300] + "..."
article_scores[label]["article_title"] = article_title_map.get(label, label)
total_score += score_pct
counted_chunks += 1
overall = round(total_score / counted_chunks, 2) if counted_chunks else 0
result = {
"overall_compliance_percentage": overall,
"relevant_articles_analyzed": len(article_scores),
"total_policy_chunks": len(chunks),
"article_scores": dict(article_scores)
}
elif model_choice == "SentenceTransformer":
model = joblib.load("sentence_transformer_model.joblib")
gdpr_texts = []
gdpr_map = {}
for article in gdpr_data:
number, title = article["article_number"], article["article_title"]
body = " ".join([f"{k} {v}" for sec in article["sections"] for k, v in sec.items()])
full_text = f"Article {number}: {title}. {body}"
gdpr_map[number] = {
"title": title,
"text": full_text
}
gdpr_texts.append(full_text)
gdpr_embeddings = model.encode(gdpr_texts, convert_to_numpy=True)
chunks = chunk_policy_text(policy_text)
chunk_embeddings = model.encode(chunks, convert_to_numpy=True)
sim_matrix = cosine_similarity(gdpr_embeddings, chunk_embeddings)
article_scores = {}
presence_threshold = 0.35
total_score, counted_articles = 0, 0
for i, (art_num, art_data) in enumerate(gdpr_map.items()):
max_sim = np.max(sim_matrix[i])
best_idx = np.argmax(sim_matrix[i])
if max_sim < presence_threshold:
continue
score_pct = min(100, max(0, (max_sim - presence_threshold) / (1 - presence_threshold) * 100))
article_scores[art_num] = {
"article_title": art_data["title"],
"compliance_percentage": round(score_pct, 2),
"similarity_score": round(max_sim, 4),
"matched_text_snippet": chunks[best_idx][:300] + "..."
}
total_score += score_pct
counted_articles += 1
overall = round(total_score / counted_articles, 2) if counted_articles else 0
result = {
"overall_compliance_percentage": overall,
"relevant_articles_analyzed": counted_articles,
"total_policy_chunks": len(chunks),
"article_scores": article_scores
}
elif model_choice == "LLM Model":
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=api_key)
EMBED_MODEL = "text-embedding-3-small"
gdpr_embeddings = {}
gdpr_map = {}
for art in gdpr_data:
number, title = art["article_number"], art["article_title"]
art_text = prepare_article_text(art)
gdpr_embeddings[art["article_number"]] = {
"embedding": get_embedding(art_text),
"title": art["article_title"]
}
gdpr_map[number] = {"title": title, "text": art_text}
chunks = chunk_policy_text(policy_text)
chunk_embeddings = get_embedding(chunks)
gdpr_embedding_vectors = [v["embedding"] for v in gdpr_embeddings.values()]
sim_matrix = cosine_similarity(gdpr_embedding_vectors, chunk_embeddings)
article_scores = {}
presence_threshold = 0.35
total_score, counted_articles = 0, 0
for i, (art_num, art_data) in enumerate(gdpr_map.items()):
max_sim = np.max(sim_matrix[i])
best_idx = np.argmax(sim_matrix[i])
if max_sim < presence_threshold:
continue
score_pct = min(100, max(0, (max_sim - presence_threshold) / (1 - presence_threshold) * 100))
article_scores[art_num] = {
"article_title": art_data["title"],
"compliance_percentage": round(score_pct, 2),
"similarity_score": round(max_sim, 4),
"matched_text_snippet": chunks[best_idx][:300] + "..."
}
total_score += score_pct
counted_articles += 1
overall = round(total_score / counted_articles, 2) if counted_articles else 0
result = {
"overall_compliance_percentage": overall,
"relevant_articles_analyzed": counted_articles,
"total_policy_chunks": len(chunks),
"article_scores": article_scores
}
elif model_choice == "Knowledge Graphs":
EMBED_MODEL = "all-MiniLM-L6-v2"
model = SentenceTransformer(EMBED_MODEL)
TOP_N = 1
BASE_URI = "http://example.org/gdpr#"
gdpr_embeddings = {}
gdpr_map = {}
for art in gdpr_data:
number, title = art["article_number"], art["article_title"]
art_text = prepare_article_text(art)
gdpr_embeddings[art["article_number"]] = {
"embedding": model.encode(art_text),
"title": art["article_title"],
"uri": URIRef(f"{BASE_URI}Article{art['article_number']}")
}
gdpr_map[number] = {"title": title, "text": art_text}
g = Graph()
EX = Namespace(BASE_URI)
g.bind("ex", EX)
# Add article nodes
for num, info in gdpr_embeddings.items():
g.add((info["uri"], RDF.type, EX.Article))
g.add((info["uri"], RDFS.label, Literal(f"Article {num}: {info['title']}")))
# Extract GDPR article vectors
article_nums = list(gdpr_embeddings.keys())
article_vectors = np.array([gdpr_embeddings[num]["embedding"] for num in article_nums])
# Score tracking
total_score = 0
counted_sections = 0
chunks = chunk_policy_text(policy_text)
report = []
presence_threshold = 0.35
# Process each policy chunk
for idx, text in enumerate(chunks, start=1):
if not text.strip():
continue
# RDF section node
sec_uri = URIRef(f"{BASE_URI}PolicySection{idx}")
g.add((sec_uri, RDF.type, EX.PolicySection))
g.add((sec_uri, RDFS.label, Literal(f"Section {idx}")))
# Embed section
sec_emb = model.encode(text)
# Similarities to all articles
sims = []
for i, art_num in enumerate(article_nums):
art_emb = article_vectors[i]
sim = cosine_similarity([sec_emb], [art_emb])[0][0]
sims.append({
"article": art_num,
"title": gdpr_embeddings[art_num]["title"],
"similarity": round(sim, 4),
"uri": gdpr_embeddings[art_num]["uri"],
"text": gdpr_map[art_num]["text"]
})
# Sort and pick best match
sims.sort(key=lambda x: x["similarity"], reverse=True)
top_match = sims[0]
# Threshold filtering
if top_match["similarity"] < presence_threshold:
continue
# Compliance score
score_pct = min(100, max(0, (top_match["similarity"] - presence_threshold) / (1 - presence_threshold) * 100))
# Add RDF triples
g.add((sec_uri, EX.relatesTo, top_match["uri"]))
g.add((sec_uri, EX.similarityScore, Literal(top_match["similarity"], datatype=XSD.float)))
g.serialize(destination="gdpr_policy_graph.ttl", format="turtle")
total_score += score_pct
counted_sections += 1
# Final summary
overall = round(total_score / counted_sections, 2) if counted_sections else 0
result = {
"overall_compliance_percentage": overall,
"relevant_sections_analyzed": counted_sections,
"total_policy_sections": len(chunks),
"ttl": True
}
else:
result = {}
if result:
st.subheader(f"β
Overall Compliance Score: {result['overall_compliance_percentage']}%")
st.markdown("---")
st.subheader("π Detailed Article Breakdown")
ttl_file_path = "gdpr_policy_graph.ttl"
if result.get('article_scores'):
for art_num, data in sorted(result['article_scores'].items(), key=lambda x: -x[1]['compliance_percentage']):
with st.expander(f"Article {art_num} - {data['article_title']} ({data['compliance_percentage']}%)"):
st.write(f"**Similarity Score**: {data['similarity_score']}")
st.write(f"**Matched Text**:\n\n{data['matched_text_snippet']}")
elif result.get("ttl") and os.path.exists(ttl_file_path):
st.markdown("---")
st.subheader("π§ Interactive RDF Graph Visualization")
g = Graph()
g.parse(ttl_file_path, format="ttl")
nx_graph = rdflib_to_networkx(g)
net = draw_pyvis_graph(nx_graph)
# Save the interactive graph temporarily
net.save_graph("rdf_graph.html")
HtmlFile = open("rdf_graph.html", "r", encoding="utf-8").read()
# Display interactive graph inside Streamlit
components.html(HtmlFile, height=650, scrolling=True)
else:
st.info("No article scores or RDF graph to display.")
else:
st.info("Please upload both a GDPR JSON file and a company policy text file to begin.")
|