SOE_Python_StreamlitApp / src /streamlit_app.py
lenawilli's picture
Update src/streamlit_app.py
6ee4115 verified
raw
history blame
3.41 kB
import streamlit as st
import pandas as pd
import numpy as np
import tensorflow as tf
import joblib
import os
import zipfile
import tempfile
# Define static file paths
BASE_DIR = os.path.dirname(__file__)
ZIP_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.zip")
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
ENCODINGS_PATH = os.path.join(BASE_DIR, "encodings.pkl")
@st.cache_resource
def load_model():
try:
# Define extraction directory in a writable temp location
extract_dir = os.path.join(tempfile.gettempdir(), "recommender_model_extracted")
# Only extract if not already done
if not os.path.exists(extract_dir):
with zipfile.ZipFile(ZIP_MODEL_PATH, "r") as zip_ref:
zip_ref.extractall(extract_dir)
# Load model from extracted directory
return tf.keras.models.load_model(extract_dir)
except Exception as e:
st.error(f"❌ Failed to load model:\n\n{e}")
st.stop()
@st.cache_data
def load_assets():
try:
df_movies = pd.read_csv(MOVIES_PATH)
except FileNotFoundError:
st.error("❌ movies.csv not found.")
st.stop()
try:
user_map, movie_map = joblib.load(ENCODINGS_PATH)
except FileNotFoundError:
st.error("❌ encodings.pkl not found.")
st.stop()
return df_movies, user_map, movie_map
# Load model and assets
model = load_model()
movies_df, user2idx, movie2idx = load_assets()
reverse_movie_map = {v: k for k, v in movie2idx.items()}
# App UI
st.title("🎬 TensorFlow Movie Recommender")
st.write("Select some movies you've liked to get personalized recommendations:")
# Movie selection UI
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
movie_choices = [movie_titles[mid] for mid in movie2idx if mid in movie_titles]
selected_titles = st.multiselect("🎞️ Liked movies", sorted(movie_choices))
# Create ratings dictionary
user_ratings = {}
for title in selected_titles:
movie_id = next((k for k, v in movie_titles.items() if v == title), None)
if movie_id:
user_ratings[movie_id] = 5.0
# Generate recommendations
if st.button("🎯 Get Recommendations"):
if not user_ratings:
st.warning("Please select at least one movie.")
else:
liked_indices = [movie2idx[m] for m in user_ratings if m in movie2idx]
if not liked_indices:
st.error("⚠️ No valid movie encodings found.")
st.stop()
# Get embedding averages and scores
avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
all_movie_indices = tf.range(len(movie2idx))
movie_embeddings = model.layers[3](all_movie_indices)
scores = tf.reduce_sum(avg_embedding * movie_embeddings, axis=1).numpy()
top_indices = np.argsort(scores)[::-1]
# Top N recommendations excluding already-liked
recommended = []
for idx in top_indices:
mid = reverse_movie_map.get(idx)
if mid not in user_ratings and mid in movie_titles:
recommended.append((movie_titles[mid], scores[idx]))
if len(recommended) >= 10:
break
# Display recommendations
st.subheader("🍿 Top 10 Recommendations")
for title, score in recommended:
st.write(f"**{title}** β€” Score: `{score:.3f}`")