Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +17 -8
src/streamlit_app.py
CHANGED
@@ -7,7 +7,7 @@ import os
|
|
7 |
import zipfile
|
8 |
import tempfile
|
9 |
|
10 |
-
#
|
11 |
BASE_DIR = os.path.dirname(__file__)
|
12 |
ZIP_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.zip")
|
13 |
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
|
@@ -16,16 +16,19 @@ ENCODINGS_PATH = os.path.join(BASE_DIR, "encodings.pkl")
|
|
16 |
@st.cache_resource
|
17 |
def load_model():
|
18 |
try:
|
19 |
-
|
|
|
20 |
|
21 |
-
#
|
22 |
if not os.path.exists(extract_dir):
|
23 |
with zipfile.ZipFile(ZIP_MODEL_PATH, "r") as zip_ref:
|
24 |
zip_ref.extractall(extract_dir)
|
25 |
|
|
|
26 |
return tf.keras.models.load_model(extract_dir)
|
|
|
27 |
except Exception as e:
|
28 |
-
st.error(f"Failed to load model
|
29 |
st.stop()
|
30 |
|
31 |
@st.cache_data
|
@@ -33,13 +36,13 @@ def load_assets():
|
|
33 |
try:
|
34 |
df_movies = pd.read_csv(MOVIES_PATH)
|
35 |
except FileNotFoundError:
|
36 |
-
st.error("β
|
37 |
st.stop()
|
38 |
|
39 |
try:
|
40 |
user_map, movie_map = joblib.load(ENCODINGS_PATH)
|
41 |
except FileNotFoundError:
|
42 |
-
st.error("β
|
43 |
st.stop()
|
44 |
|
45 |
return df_movies, user_map, movie_map
|
@@ -49,20 +52,23 @@ model = load_model()
|
|
49 |
movies_df, user2idx, movie2idx = load_assets()
|
50 |
reverse_movie_map = {v: k for k, v in movie2idx.items()}
|
51 |
|
52 |
-
# UI
|
53 |
st.title("π¬ TensorFlow Movie Recommender")
|
54 |
st.write("Select some movies you've liked to get personalized recommendations:")
|
55 |
|
|
|
56 |
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
|
57 |
-
movie_choices = [movie_titles[mid] for mid in movie2idx
|
58 |
selected_titles = st.multiselect("ποΈ Liked movies", sorted(movie_choices))
|
59 |
|
|
|
60 |
user_ratings = {}
|
61 |
for title in selected_titles:
|
62 |
movie_id = next((k for k, v in movie_titles.items() if v == title), None)
|
63 |
if movie_id:
|
64 |
user_ratings[movie_id] = 5.0
|
65 |
|
|
|
66 |
if st.button("π― Get Recommendations"):
|
67 |
if not user_ratings:
|
68 |
st.warning("Please select at least one movie.")
|
@@ -72,12 +78,14 @@ if st.button("π― Get Recommendations"):
|
|
72 |
st.error("β οΈ No valid movie encodings found.")
|
73 |
st.stop()
|
74 |
|
|
|
75 |
avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
|
76 |
all_movie_indices = tf.range(len(movie2idx))
|
77 |
movie_embeddings = model.layers[3](all_movie_indices)
|
78 |
scores = tf.reduce_sum(avg_embedding * movie_embeddings, axis=1).numpy()
|
79 |
top_indices = np.argsort(scores)[::-1]
|
80 |
|
|
|
81 |
recommended = []
|
82 |
for idx in top_indices:
|
83 |
mid = reverse_movie_map.get(idx)
|
@@ -86,6 +94,7 @@ if st.button("π― Get Recommendations"):
|
|
86 |
if len(recommended) >= 10:
|
87 |
break
|
88 |
|
|
|
89 |
st.subheader("πΏ Top 10 Recommendations")
|
90 |
for title, score in recommended:
|
91 |
st.write(f"**{title}** β Score: `{score:.3f}`")
|
|
|
7 |
import zipfile
|
8 |
import tempfile
|
9 |
|
10 |
+
# Define static file paths
|
11 |
BASE_DIR = os.path.dirname(__file__)
|
12 |
ZIP_MODEL_PATH = os.path.join(BASE_DIR, "recommender_model.zip")
|
13 |
MOVIES_PATH = os.path.join(BASE_DIR, "movies.csv")
|
|
|
16 |
@st.cache_resource
|
17 |
def load_model():
|
18 |
try:
|
19 |
+
# Define extraction directory in a writable temp location
|
20 |
+
extract_dir = os.path.join(tempfile.gettempdir(), "recommender_model_extracted")
|
21 |
|
22 |
+
# Only extract if not already done
|
23 |
if not os.path.exists(extract_dir):
|
24 |
with zipfile.ZipFile(ZIP_MODEL_PATH, "r") as zip_ref:
|
25 |
zip_ref.extractall(extract_dir)
|
26 |
|
27 |
+
# Load model from extracted directory
|
28 |
return tf.keras.models.load_model(extract_dir)
|
29 |
+
|
30 |
except Exception as e:
|
31 |
+
st.error(f"β Failed to load model:\n\n{e}")
|
32 |
st.stop()
|
33 |
|
34 |
@st.cache_data
|
|
|
36 |
try:
|
37 |
df_movies = pd.read_csv(MOVIES_PATH)
|
38 |
except FileNotFoundError:
|
39 |
+
st.error("β movies.csv not found.")
|
40 |
st.stop()
|
41 |
|
42 |
try:
|
43 |
user_map, movie_map = joblib.load(ENCODINGS_PATH)
|
44 |
except FileNotFoundError:
|
45 |
+
st.error("β encodings.pkl not found.")
|
46 |
st.stop()
|
47 |
|
48 |
return df_movies, user_map, movie_map
|
|
|
52 |
movies_df, user2idx, movie2idx = load_assets()
|
53 |
reverse_movie_map = {v: k for k, v in movie2idx.items()}
|
54 |
|
55 |
+
# App UI
|
56 |
st.title("π¬ TensorFlow Movie Recommender")
|
57 |
st.write("Select some movies you've liked to get personalized recommendations:")
|
58 |
|
59 |
+
# Movie selection UI
|
60 |
movie_titles = movies_df.set_index("movieId")["title"].to_dict()
|
61 |
+
movie_choices = [movie_titles[mid] for mid in movie2idx if mid in movie_titles]
|
62 |
selected_titles = st.multiselect("ποΈ Liked movies", sorted(movie_choices))
|
63 |
|
64 |
+
# Create ratings dictionary
|
65 |
user_ratings = {}
|
66 |
for title in selected_titles:
|
67 |
movie_id = next((k for k, v in movie_titles.items() if v == title), None)
|
68 |
if movie_id:
|
69 |
user_ratings[movie_id] = 5.0
|
70 |
|
71 |
+
# Generate recommendations
|
72 |
if st.button("π― Get Recommendations"):
|
73 |
if not user_ratings:
|
74 |
st.warning("Please select at least one movie.")
|
|
|
78 |
st.error("β οΈ No valid movie encodings found.")
|
79 |
st.stop()
|
80 |
|
81 |
+
# Get embedding averages and scores
|
82 |
avg_embedding = tf.reduce_mean(model.layers[2](tf.constant(liked_indices)), axis=0, keepdims=True)
|
83 |
all_movie_indices = tf.range(len(movie2idx))
|
84 |
movie_embeddings = model.layers[3](all_movie_indices)
|
85 |
scores = tf.reduce_sum(avg_embedding * movie_embeddings, axis=1).numpy()
|
86 |
top_indices = np.argsort(scores)[::-1]
|
87 |
|
88 |
+
# Top N recommendations excluding already-liked
|
89 |
recommended = []
|
90 |
for idx in top_indices:
|
91 |
mid = reverse_movie_map.get(idx)
|
|
|
94 |
if len(recommended) >= 10:
|
95 |
break
|
96 |
|
97 |
+
# Display recommendations
|
98 |
st.subheader("πΏ Top 10 Recommendations")
|
99 |
for title, score in recommended:
|
100 |
st.write(f"**{title}** β Score: `{score:.3f}`")
|