Spaces:
Running
Running
File size: 5,634 Bytes
59ff001 3658a99 59ff001 6a0411c 2a16ca6 70fe98e 2a16ca6 8be5494 59ff001 2a16ca6 bd2cd53 2a16ca6 59ff001 5827499 2a16ca6 bd2cd53 2a16ca6 bd2cd53 2a16ca6 e9af7f8 6a0411c 59ff001 2a16ca6 59ff001 6a0411c 59ff001 c7e3ff4 59ff001 2a16ca6 59ff001 2a16ca6 59ff001 2a16ca6 e9af7f8 2a16ca6 e9af7f8 2a16ca6 bd2cd53 2a16ca6 bd2cd53 2a16ca6 bd2cd53 2a16ca6 5827499 2a16ca6 e9af7f8 2a16ca6 70fe98e e9af7f8 2a16ca6 70fe98e e9af7f8 70fe98e e9af7f8 2a16ca6 e9af7f8 70fe98e e9af7f8 2a16ca6 822eba7 6a0411c 2a16ca6 59ff001 e9af7f8 59ff001 e9af7f8 2a16ca6 59ff001 6a0411c d45f3e7 6a0411c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
import torch
import base64
import fitz # PyMuPDF
import tempfile
from io import BytesIO
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text
from latex2mathml.converter import convert as latex_to_mathml
import markdown2
import html
import json
import re
# Load model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def convert_latex(text):
def replacer(match):
try:
return f"<math>{latex_to_mathml(match.group(1))}</math>"
except:
return html.escape(match.group(0))
text = re.sub(r'\\\((.*?)\\\)', replacer, text)
text = re.sub(r'\\\[(.*?)\\\]', replacer, text)
return text
def stitch_paragraphs(pages):
joined = "\n".join(pages)
return re.sub(r"(?<!\n)\n(?!\n)", " ", joined) # Join lines not separated by double newline
def process_pdf_to_html(pdf_file, title, author):
pdf_path = pdf_file.name
doc = fitz.open(pdf_path)
num_pages = len(doc)
# Extract TOC
toc_entries = doc.get_toc()
toc_by_page = {}
for level, text, page in toc_entries:
toc_by_page.setdefault(page, []).append((level, text))
pages_output = []
cover_img_html = ""
for i in range(num_pages):
page_num = i + 1
print(f"Processing page {page_num}...")
try:
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)
prompt = (
"Below is the image of one page of a document, as well as some raw textual content that was previously "
"extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
"Do not hallucinate.\n"
"RAW_TEXT_START\n"
f"{anchor_text}\n"
"RAW_TEXT_END"
)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image = Image.open(BytesIO(base64.b64decode(image_base64)))
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(
**inputs,
temperature=0.8,
max_new_tokens=5096,
num_return_sequences=1,
do_sample=True,
)
prompt_len = inputs["input_ids"].shape[1]
new_tokens = output[:, prompt_len:].detach().cpu()
decoded = ""
if new_tokens.shape[1] > 0:
try:
raw = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)[0].strip()
parsed = json.loads(raw)
decoded = parsed.get("natural_text", raw)
except:
decoded = raw
except Exception as e:
decoded = f"[Error on page {page_num}: {str(e)}]"
# Save first image as cover
if page_num == 1:
cover_img_html = f'<img src="data:image/png;base64,{image_base64}" alt="cover" style="max-width:100%; height:auto;"><hr>'
# Add TOC-based headers if any
header_html = ""
if page_num in toc_by_page:
for level, header in toc_by_page[page_num]:
tag = f"h{min(level, 6)}"
header_html += f"<{tag}>{html.escape(header)}</{tag}>\n"
pages_output.append(f"{header_html}\n{decoded}")
# Join paragraphs across pages
stitched = stitch_paragraphs(pages_output)
mathml = convert_latex(stitched)
rendered = markdown2.markdown(mathml)
html_doc = f"""<!DOCTYPE html>
<html>
<head>
<meta charset='utf-8'>
<title>{html.escape(title)}</title>
</head>
<body>
<h1>{html.escape(title)}</h1>
<h3>{html.escape(author)}</h3>
{cover_img_html}
{rendered}
</body>
</html>
"""
with tempfile.NamedTemporaryFile(delete=False, suffix=".html", dir="/tmp", mode="w", encoding="utf-8") as tmp:
tmp.write(html_doc)
return tmp.name
iface = gr.Interface(
fn=process_pdf_to_html,
inputs=[
gr.File(label="Upload PDF", file_types=[".pdf"]),
gr.Textbox(label="HTML Title"),
gr.Textbox(label="Author(s)")
],
outputs=gr.File(label="Download HTML"),
title="PDF to HTML Converter (Refined with olmOCR)",
description="Uploads a PDF, extracts text via vision+prompt, stitches paragraphs, adds headers, and converts math and markdown to styled HTML.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
allowed_paths=["/tmp"]
)
|