File size: 5,634 Bytes
59ff001
 
 
 
3658a99
59ff001
 
 
 
 
 
6a0411c
2a16ca6
 
70fe98e
2a16ca6
 
8be5494
59ff001
 
 
 
 
 
 
 
2a16ca6
 
 
 
 
 
 
 
 
 
 
 
 
bd2cd53
2a16ca6
59ff001
 
 
5827499
2a16ca6
bd2cd53
 
2a16ca6
 
bd2cd53
2a16ca6
e9af7f8
6a0411c
59ff001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a16ca6
59ff001
6a0411c
59ff001
 
 
c7e3ff4
59ff001
 
 
 
2a16ca6
 
59ff001
2a16ca6
 
59ff001
2a16ca6
 
 
e9af7f8
2a16ca6
 
 
 
e9af7f8
2a16ca6
 
 
bd2cd53
2a16ca6
 
bd2cd53
 
2a16ca6
 
bd2cd53
2a16ca6
5827499
2a16ca6
 
 
 
e9af7f8
2a16ca6
70fe98e
e9af7f8
2a16ca6
70fe98e
e9af7f8
 
70fe98e
e9af7f8
 
2a16ca6
e9af7f8
70fe98e
 
 
e9af7f8
2a16ca6
822eba7
6a0411c
 
2a16ca6
59ff001
 
e9af7f8
59ff001
 
e9af7f8
2a16ca6
 
59ff001
6a0411c
d45f3e7
 
6a0411c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import torch
import base64
import fitz  # PyMuPDF
import tempfile
from io import BytesIO
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text

from latex2mathml.converter import convert as latex_to_mathml
import markdown2
import html
import json
import re

# Load model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
    "allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def convert_latex(text):
    def replacer(match):
        try:
            return f"<math>{latex_to_mathml(match.group(1))}</math>"
        except:
            return html.escape(match.group(0))
    text = re.sub(r'\\\((.*?)\\\)', replacer, text)
    text = re.sub(r'\\\[(.*?)\\\]', replacer, text)
    return text

def stitch_paragraphs(pages):
    joined = "\n".join(pages)
    return re.sub(r"(?<!\n)\n(?!\n)", " ", joined)  # Join lines not separated by double newline

def process_pdf_to_html(pdf_file, title, author):
    pdf_path = pdf_file.name
    doc = fitz.open(pdf_path)
    num_pages = len(doc)

    # Extract TOC
    toc_entries = doc.get_toc()
    toc_by_page = {}
    for level, text, page in toc_entries:
        toc_by_page.setdefault(page, []).append((level, text))

    pages_output = []
    cover_img_html = ""

    for i in range(num_pages):
        page_num = i + 1
        print(f"Processing page {page_num}...")

        try:
            image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
            anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)

            prompt = (
                "Below is the image of one page of a document, as well as some raw textual content that was previously "
                "extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
                "Do not hallucinate.\n"
                "RAW_TEXT_START\n"
                f"{anchor_text}\n"
                "RAW_TEXT_END"
            )

            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
                    ],
                }
            ]
            text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            image = Image.open(BytesIO(base64.b64decode(image_base64)))

            inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
            inputs = {k: v.to(device) for k, v in inputs.items()}

            output = model.generate(
                **inputs,
                temperature=0.8,
                max_new_tokens=5096,
                num_return_sequences=1,
                do_sample=True,
            )

            prompt_len = inputs["input_ids"].shape[1]
            new_tokens = output[:, prompt_len:].detach().cpu()

            decoded = ""
            if new_tokens.shape[1] > 0:
                try:
                    raw = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)[0].strip()
                    parsed = json.loads(raw)
                    decoded = parsed.get("natural_text", raw)
                except:
                    decoded = raw

        except Exception as e:
            decoded = f"[Error on page {page_num}: {str(e)}]"

        # Save first image as cover
        if page_num == 1:
            cover_img_html = f'<img src="data:image/png;base64,{image_base64}" alt="cover" style="max-width:100%; height:auto;"><hr>'

        # Add TOC-based headers if any
        header_html = ""
        if page_num in toc_by_page:
            for level, header in toc_by_page[page_num]:
                tag = f"h{min(level, 6)}"
                header_html += f"<{tag}>{html.escape(header)}</{tag}>\n"

        pages_output.append(f"{header_html}\n{decoded}")

    # Join paragraphs across pages
    stitched = stitch_paragraphs(pages_output)
    mathml = convert_latex(stitched)
    rendered = markdown2.markdown(mathml)

    html_doc = f"""<!DOCTYPE html>
    <html>
    <head>
        <meta charset='utf-8'>
        <title>{html.escape(title)}</title>
    </head>
    <body>
        <h1>{html.escape(title)}</h1>
        <h3>{html.escape(author)}</h3>
        {cover_img_html}
        {rendered}
    </body>
    </html>
    """

    with tempfile.NamedTemporaryFile(delete=False, suffix=".html", dir="/tmp", mode="w", encoding="utf-8") as tmp:
        tmp.write(html_doc)
        return tmp.name

iface = gr.Interface(
    fn=process_pdf_to_html,
    inputs=[
        gr.File(label="Upload PDF", file_types=[".pdf"]),
        gr.Textbox(label="HTML Title"),
        gr.Textbox(label="Author(s)")
    ],
    outputs=gr.File(label="Download HTML"),
    title="PDF to HTML Converter (Refined with olmOCR)",
    description="Uploads a PDF, extracts text via vision+prompt, stitches paragraphs, adds headers, and converts math and markdown to styled HTML.",
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True,
        allowed_paths=["/tmp"]
    )