Spaces:
Running
Running
File size: 5,058 Bytes
59ff001 6a0411c 59ff001 6a0411c 5827499 8be5494 59ff001 5827499 fff0f58 5827499 6a0411c d5f7d0d 5827499 6a0411c 59ff001 6a0411c 59ff001 5827499 59ff001 6a0411c 5827499 fff0f58 59ff001 d5f7d0d 822eba7 6a0411c 59ff001 6a0411c 59ff001 6a0411c d45f3e7 6a0411c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gradio as gr
import torch
import base64
import fitz # PyMuPDF
from io import BytesIO
from PIL import Image
from pathlib import Path
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text
from ebooklib import epub
# Load model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def process_pdf_to_epub(pdf_file, title, author):
pdf_path = pdf_file.name
doc = fitz.open(pdf_path)
num_pages = len(doc)
book = epub.EpubBook()
book.set_identifier("id123456")
book.set_title(title)
book.add_author(author)
chapters = []
for i in range(num_pages):
page_num = i + 1
print(f"Processing page {page_num}...")
try:
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)
prompt = (
"Below is the image of one page of a document, as well as some raw textual content that was previously "
"extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
"Do not hallucinate.\n"
"RAW_TEXT_START\n"
f"{anchor_text}\n"
"RAW_TEXT_END"
)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image = Image.open(BytesIO(base64.b64decode(image_base64)))
inputs = processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
)
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(
**inputs,
temperature=0.8,
max_new_tokens=512,
num_return_sequences=1,
do_sample=True,
)
prompt_length = inputs["input_ids"].shape[1]
new_tokens = output[:, prompt_length:].detach().cpu()
decoded = "[No output generated]"
if new_tokens is not None and new_tokens.shape[1] > 0:
try:
decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
decoded = decoded_list[0].strip() if decoded_list else "[No output generated]"
except Exception as decode_error:
decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]"
else:
decoded = "[Model returned no new tokens]"
except Exception as processing_error:
decoded = f"[Processing error on page {page_num}: {str(processing_error)}]"
print(f"Decoded content for page {page_num}: {decoded}")
chapter = epub.EpubHtml(title=f"Page {page_num}", file_name=f"page_{page_num}.xhtml", lang="en")
chapter.content = f"<h1>Page {page_num}</h1><p>{decoded}</p>"
book.add_item(chapter)
chapters.append(chapter)
if page_num == 1:
cover_image = Image.open(BytesIO(base64.b64decode(image_base64)))
cover_io = BytesIO()
cover_image.save(cover_io, format='PNG')
book.set_cover("cover.png", cover_io.getvalue())
book.toc = tuple(chapters)
book.add_item(epub.EpubNcx())
book.add_item(epub.EpubNav())
book.spine = ['nav'] + chapters
# ✅ SAFELY write to a temp file in /tmp
with tempfile.NamedTemporaryFile(delete=False, suffix=".epub", dir="/tmp") as tmp:
epub.write_epub(tmp.name, book)
return tmp.name
# Gradio Interface
iface = gr.Interface(
fn=process_pdf_to_epub,
inputs=[
gr.File(label="Upload PDF", file_types=[".pdf"]),
gr.Textbox(label="EPUB Title"),
gr.Textbox(label="Author(s)")
],
outputs=gr.File(label="Download EPUB"),
title="PDF to EPUB Converter (with olmOCR)",
description="Uploads a PDF, extracts text from each page with vision + prompt, and builds an EPUB using the outputs. Sets the first page as cover.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
allowed_paths=["/tmp"]
)
|