File size: 5,058 Bytes
59ff001
 
 
 
 
 
6a0411c
59ff001
 
 
 
6a0411c
5827499
8be5494
59ff001
 
 
 
 
 
 
 
 
 
 
 
5827499
fff0f58
5827499
6a0411c
 
d5f7d0d
5827499
6a0411c
59ff001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0411c
59ff001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5827499
 
 
59ff001
 
 
 
 
6a0411c
 
5827499
fff0f58
59ff001
d5f7d0d
822eba7
 
 
 
6a0411c
59ff001
6a0411c
 
59ff001
 
 
 
 
 
 
 
 
6a0411c
d45f3e7
 
6a0411c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
import torch
import base64
import fitz  # PyMuPDF
from io import BytesIO
from PIL import Image
from pathlib import Path
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text

from ebooklib import epub

# Load model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
    "allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def process_pdf_to_epub(pdf_file, title, author):
    pdf_path = pdf_file.name
    doc = fitz.open(pdf_path)
    num_pages = len(doc)

    book = epub.EpubBook()
    book.set_identifier("id123456")
    book.set_title(title)
    book.add_author(author)

    chapters = []

    for i in range(num_pages):
        page_num = i + 1
        print(f"Processing page {page_num}...")

        try:
            image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
            anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)

            prompt = (
                "Below is the image of one page of a document, as well as some raw textual content that was previously "
                "extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
                "Do not hallucinate.\n"
                "RAW_TEXT_START\n"
                f"{anchor_text}\n"
                "RAW_TEXT_END"
            )

            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
                    ],
                }
            ]
            text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            image = Image.open(BytesIO(base64.b64decode(image_base64)))

            inputs = processor(
                text=[text],
                images=[image],
                padding=True,
                return_tensors="pt",
            )
            inputs = {k: v.to(device) for k, v in inputs.items()}

            output = model.generate(
                **inputs,
                temperature=0.8,
                max_new_tokens=512,
                num_return_sequences=1,
                do_sample=True,
            )

            prompt_length = inputs["input_ids"].shape[1]
            new_tokens = output[:, prompt_length:].detach().cpu()

            decoded = "[No output generated]"
            if new_tokens is not None and new_tokens.shape[1] > 0:
                try:
                    decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
                    decoded = decoded_list[0].strip() if decoded_list else "[No output generated]"
                except Exception as decode_error:
                    decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]"
            else:
                decoded = "[Model returned no new tokens]"

        except Exception as processing_error:
            decoded = f"[Processing error on page {page_num}: {str(processing_error)}]"

        print(f"Decoded content for page {page_num}: {decoded}")

        chapter = epub.EpubHtml(title=f"Page {page_num}", file_name=f"page_{page_num}.xhtml", lang="en")
        chapter.content = f"<h1>Page {page_num}</h1><p>{decoded}</p>"
        book.add_item(chapter)
        chapters.append(chapter)

        if page_num == 1:
            cover_image = Image.open(BytesIO(base64.b64decode(image_base64)))
            cover_io = BytesIO()
            cover_image.save(cover_io, format='PNG')
            book.set_cover("cover.png", cover_io.getvalue())

    book.toc = tuple(chapters)
    book.add_item(epub.EpubNcx())
    book.add_item(epub.EpubNav())
    book.spine = ['nav'] + chapters

    # ✅ SAFELY write to a temp file in /tmp
    with tempfile.NamedTemporaryFile(delete=False, suffix=".epub", dir="/tmp") as tmp:
        epub.write_epub(tmp.name, book)
        return tmp.name

# Gradio Interface
iface = gr.Interface(
    fn=process_pdf_to_epub,
    inputs=[
        gr.File(label="Upload PDF", file_types=[".pdf"]),
        gr.Textbox(label="EPUB Title"),
        gr.Textbox(label="Author(s)")
    ],
    outputs=gr.File(label="Download EPUB"),
    title="PDF to EPUB Converter (with olmOCR)",
    description="Uploads a PDF, extracts text from each page with vision + prompt, and builds an EPUB using the outputs. Sets the first page as cover.",
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True,
        allowed_paths=["/tmp"]
    )