Spaces:
Running
Running
File size: 5,210 Bytes
5827499 af75cff 5827499 af75cff d45f3e7 5827499 8be5494 af75cff 5827499 89a1632 5827499 89a1632 af75cff afbaa03 5827499 afbaa03 5827499 8be5494 5827499 fff0f58 5827499 fff0f58 5827499 84e3794 5827499 84e3794 5827499 84e3794 5827499 8d1fa76 84e3794 8d1fa76 84e3794 8d1fa76 2ac226e 5201e8a 2ac226e 84e3794 6ba101c 5827499 fff0f58 5827499 fff0f58 5827499 fff0f58 5827499 8be5494 afbaa03 5827499 8be5494 f01e8a4 5827499 99e3331 84e3794 d45f3e7 9d46b18 84e3794 9d46b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
import torch
import base64
import fitz # PyMuPDF
from io import BytesIO
from PIL import Image
from pathlib import Path
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text
from ebooklib import epub
# Load model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def process_pdf_to_epub(pdf_file, title, author):
pdf_path = pdf_file.name
doc = fitz.open(pdf_path)
num_pages = len(doc)
# Create EPUB book
book = epub.EpubBook()
book.set_identifier("id123456")
book.set_title(title)
book.add_author(author)
chapters = []
for i in range(num_pages):
page_num = i + 1
print(f"Processing page {page_num}...")
try:
# Render page to base64 image
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)
print(f"Anchor text for page {page_num}: {anchor_text}")
# New prompt format
prompt = (
"Below is the image of one page of a document, as well as some raw textual content that was previously "
"extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
"Do not hallucinate.\n"
"RAW_TEXT_START\n"
f"{anchor_text}\n"
"RAW_TEXT_END"
)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image = Image.open(BytesIO(base64.b64decode(image_base64)))
inputs = processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
)
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(
**inputs,
temperature=0.8,
max_new_tokens=512,
num_return_sequences=1,
do_sample=True,
)
prompt_length = inputs["input_ids"].shape[1]
new_tokens = output[:, prompt_length:].detach().cpu()
decoded = "[No output generated]"
if new_tokens is not None and new_tokens.shape[1] > 0:
try:
decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
decoded = decoded_list[0].strip() if decoded_list else "[No output generated]"
except Exception as decode_error:
decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]"
else:
decoded = "[Model returned no new tokens]"
except Exception as processing_error:
decoded = f"[Processing error on page {page_num}: {str(processing_error)}]"
print(f"Decoded content for page {page_num}: {decoded}")
# Create chapter
chapter = epub.EpubHtml(title=f"Page {page_num}", file_name=f"page_{page_num}.xhtml", lang="en")
chapter.content = f"<h1>Page {page_num}</h1><p>{decoded}</p>"
book.add_item(chapter)
chapters.append(chapter)
# Save cover image from page 1
if page_num == 1:
cover_image = Image.open(BytesIO(base64.b64decode(image_base64)))
cover_io = BytesIO()
cover_image.save(cover_io, format='PNG')
book.set_cover("cover.png", cover_io.getvalue())
# Assemble EPUB
book.toc = tuple(chapters)
book.add_item(epub.EpubNcx())
book.add_item(epub.EpubNav())
book.spine = ['nav'] + chapters
output_path = "/tmp/output.epub"
epub.write_epub(output_path, book)
return output_path
# Gradio Interface
iface = gr.Interface(
fn=process_pdf_to_epub,
inputs=[
gr.File(label="Upload PDF", file_types=[".pdf"]),
gr.Textbox(label="EPUB Title"),
gr.Textbox(label="Author(s)")
],
outputs=gr.File(label="Download EPUB"),
title="PDF to EPUB Converter (with olmOCR)",
description="Uploads a PDF, extracts text from each page with vision + prompt, and builds an EPUB using the outputs. Sets the first page as cover.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
allowed_paths=["/tmp"]
)
|