File size: 5,210 Bytes
5827499
 
af75cff
5827499
af75cff
d45f3e7
5827499
8be5494
af75cff
5827499
89a1632
5827499
 
89a1632
af75cff
afbaa03
5827499
 
afbaa03
5827499
 
8be5494
5827499
 
 
 
 
 
fff0f58
5827499
fff0f58
 
 
5827499
 
 
 
84e3794
5827499
 
 
 
 
84e3794
 
 
 
 
 
 
 
 
 
 
5827499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e3794
5827499
8d1fa76
84e3794
8d1fa76
84e3794
8d1fa76
 
 
 
 
 
 
2ac226e
5201e8a
 
2ac226e
84e3794
6ba101c
5827499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fff0f58
5827499
 
 
fff0f58
5827499
fff0f58
5827499
 
 
8be5494
afbaa03
5827499
 
8be5494
f01e8a4
5827499
99e3331
84e3794
d45f3e7
 
 
9d46b18
84e3794
 
 
 
 
9d46b18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import torch
import base64
import fitz  # PyMuPDF
from io import BytesIO
from PIL import Image
from pathlib import Path
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text

from ebooklib import epub

# Load model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
    "allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def process_pdf_to_epub(pdf_file, title, author):
    pdf_path = pdf_file.name
    doc = fitz.open(pdf_path)
    num_pages = len(doc)

    # Create EPUB book
    book = epub.EpubBook()
    book.set_identifier("id123456")
    book.set_title(title)
    book.add_author(author)

    chapters = []

    for i in range(num_pages):
        page_num = i + 1
        print(f"Processing page {page_num}...")

        try:
            # Render page to base64 image
            image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
            anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)
            print(f"Anchor text for page {page_num}: {anchor_text}")

            # New prompt format
            prompt = (
                "Below is the image of one page of a document, as well as some raw textual content that was previously "
                "extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
                "Do not hallucinate.\n"
                "RAW_TEXT_START\n"
                f"{anchor_text}\n"
                "RAW_TEXT_END"
            )

            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
                    ],
                }
            ]
            text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            image = Image.open(BytesIO(base64.b64decode(image_base64)))

            inputs = processor(
                text=[text],
                images=[image],
                padding=True,
                return_tensors="pt",
            )
            inputs = {k: v.to(device) for k, v in inputs.items()}

            output = model.generate(
                **inputs,
                temperature=0.8,
                max_new_tokens=512,
                num_return_sequences=1,
                do_sample=True,
            )

            prompt_length = inputs["input_ids"].shape[1]
            new_tokens = output[:, prompt_length:].detach().cpu()

            decoded = "[No output generated]"
            if new_tokens is not None and new_tokens.shape[1] > 0:
                try:
                    decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
                    decoded = decoded_list[0].strip() if decoded_list else "[No output generated]"
                except Exception as decode_error:
                    decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]"
            else:
                decoded = "[Model returned no new tokens]"

        except Exception as processing_error:
            decoded = f"[Processing error on page {page_num}: {str(processing_error)}]"

        print(f"Decoded content for page {page_num}: {decoded}")

        # Create chapter
        chapter = epub.EpubHtml(title=f"Page {page_num}", file_name=f"page_{page_num}.xhtml", lang="en")
        chapter.content = f"<h1>Page {page_num}</h1><p>{decoded}</p>"
        book.add_item(chapter)
        chapters.append(chapter)

        # Save cover image from page 1
        if page_num == 1:
            cover_image = Image.open(BytesIO(base64.b64decode(image_base64)))
            cover_io = BytesIO()
            cover_image.save(cover_io, format='PNG')
            book.set_cover("cover.png", cover_io.getvalue())

    # Assemble EPUB
    book.toc = tuple(chapters)
    book.add_item(epub.EpubNcx())
    book.add_item(epub.EpubNav())
    book.spine = ['nav'] + chapters

    output_path = "/tmp/output.epub"
    epub.write_epub(output_path, book)
    return output_path

# Gradio Interface
iface = gr.Interface(
    fn=process_pdf_to_epub,
    inputs=[
        gr.File(label="Upload PDF", file_types=[".pdf"]),
        gr.Textbox(label="EPUB Title"),
        gr.Textbox(label="Author(s)")
    ],
    outputs=gr.File(label="Download EPUB"),
    title="PDF to EPUB Converter (with olmOCR)",
    description="Uploads a PDF, extracts text from each page with vision + prompt, and builds an EPUB using the outputs. Sets the first page as cover.",
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True,
        allowed_paths=["/tmp"]
    )