File size: 6,158 Bytes
59ff001
 
 
 
3658a99
59ff001
 
 
 
 
 
6a0411c
9f080c3
2a16ca6
9f080c3
70fe98e
8be5494
59ff001
 
 
 
 
 
 
9f080c3
2a16ca6
 
 
9f080c3
2a16ca6
 
 
 
 
9f080c3
 
 
 
 
 
 
bd2cd53
2a16ca6
59ff001
 
 
5827499
bd2cd53
 
9f080c3
 
bd2cd53
9f080c3
e9af7f8
6a0411c
59ff001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f080c3
 
 
 
 
 
59ff001
6a0411c
59ff001
 
 
c7e3ff4
59ff001
 
 
 
2a16ca6
 
59ff001
9f080c3
2a16ca6
9f080c3
 
59ff001
9f080c3
 
 
 
2a16ca6
 
9f080c3
e9af7f8
9f080c3
 
 
 
 
 
bd2cd53
 
 
2a16ca6
9f080c3
 
 
bd2cd53
9f080c3
 
5827499
9f080c3
 
 
 
 
e9af7f8
9f080c3
70fe98e
e9af7f8
9f080c3
70fe98e
9f080c3
e9af7f8
 
70fe98e
e9af7f8
 
9f080c3
e9af7f8
70fe98e
 
 
e9af7f8
9f080c3
822eba7
6a0411c
 
2a16ca6
59ff001
 
e9af7f8
59ff001
 
e9af7f8
9f080c3
 
59ff001
6a0411c
d45f3e7
 
6a0411c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import torch
import base64
import fitz  # PyMuPDF
import tempfile
from io import BytesIO
from PIL import Image
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration

from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text

import re
import markdown2
from latex2mathml.converter import convert as latex_to_mathml
import html

model = Qwen2VLForConditionalGeneration.from_pretrained(
    "allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def convert_latex_to_mathml(text):
    def replacer(match):
        try:
            return f"<math>{latex_to_mathml(match.group(1))}</math>"
        except Exception:
            return html.escape(match.group(0))
    text = re.sub(r'\\\((.*?)\\\)', replacer, text)
    text = re.sub(r'\\\[(.*?)\\\]', replacer, text)
    return text

def clean_page_headers(text):
    lines = text.split("\n")
    cleaned = []
    for line in lines:
        if not re.match(r'^(\s*Page \d+|\s*\d{1,2}\s*/\s*\d{1,2}|^[A-Z][A-Za-z\s]{0,20}$)', line.strip()):
            cleaned.append(line)
    return "\n".join(cleaned)

def process_pdf_to_html(pdf_file, title, author):
    pdf_path = pdf_file.name
    doc = fitz.open(pdf_path)
    num_pages = len(doc)

    toc_entries = doc.get_toc()
    toc_by_page = {}
    for level, header, page in toc_entries:
        toc_by_page.setdefault(page, []).append((level, header))

    all_text = ""
    cover_img_html = ""

    for i in range(num_pages):
        page_num = i + 1
        print(f"Processing page {page_num}...")

        try:
            image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
            anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)

            prompt = (
                "Below is the image of one page of a document, as well as some raw textual content that was previously "
                "extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
                "Do not hallucinate.\n"
                "RAW_TEXT_START\n"
                f"{anchor_text}\n"
                "RAW_TEXT_END"
            )

            messages = [
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": prompt},
                        {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
                    ],
                }
            ]
            text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            image = Image.open(BytesIO(base64.b64decode(image_base64)))

            inputs = processor(
                text=[text],
                images=[image],
                padding=True,
                return_tensors="pt",
            )
            inputs = {k: v.to(device) for k, v in inputs.items()}

            output = model.generate(
                **inputs,
                temperature=0.8,
                max_new_tokens=5096,
                num_return_sequences=1,
                do_sample=True,
            )

            prompt_len = inputs["input_ids"].shape[1]
            new_tokens = output[:, prompt_len:].detach().cpu()

            decoded = "[No output generated]"
            if new_tokens.shape[1] > 0:
                decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
                raw_output = decoded_list[0].strip() if decoded_list else "[No output generated]"
                try:
                    parsed = json.loads(raw_output)
                    decoded = parsed.get("natural_text", raw_output)
                except json.JSONDecodeError:
                    decoded = raw_output

        except Exception as e:
            decoded = f"[Error on page {page_num}: {e}]"

        print(f"Decoded content for page {page_num}: {decoded}")

        cleaned_text = clean_page_headers(decoded)
        mathml_converted = convert_latex_to_mathml(cleaned_text)
        markdown_converted = markdown2.markdown(mathml_converted)
        html_page = markdown_converted.replace("\n", "<br>")

        if page_num in toc_by_page:
            for level, header in toc_by_page[page_num]:
                tag = f"h{min(level, 6)}"
                html_page = f"<{tag}>{html.escape(header)}</{tag}>\n" + html_page

        all_text += f"<div>{html_page}</div>\n"

        if page_num == 1:
            cover_img_html = f'<img src="data:image/png;base64,{image_base64}" alt="cover" style="max-width:100%; height:auto;"><hr>'

    mathjax_script = """
    <script type="text/javascript" id="MathJax-script" async
      src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
    </script>
    """

    full_html = f"""<!DOCTYPE html>
    <html>
    <head>
        <meta charset="utf-8">
        <title>{html.escape(title)}</title>
        {mathjax_script}
    </head>
    <body>
        <h1>{html.escape(title)}</h1>
        <h3>{html.escape(author)}</h3>
        {cover_img_html}
        {all_text}
    </body>
    </html>
    """

    with tempfile.NamedTemporaryFile(delete=False, suffix=".html", dir="/tmp", mode="w", encoding="utf-8") as tmp:
        tmp.write(full_html)
        return tmp.name

iface = gr.Interface(
    fn=process_pdf_to_html,
    inputs=[
        gr.File(label="Upload PDF", file_types=[".pdf"]),
        gr.Textbox(label="HTML Title"),
        gr.Textbox(label="Author(s)")
    ],
    outputs=gr.File(label="Download HTML"),
    title="PDF to HTML Converter with Structure (olmOCR)",
    description="Extracts text with structure, math, and footnotes using olmOCR and renders to styled HTML.",
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True,
        allowed_paths=["/tmp"]
    )