Spaces:
Running
Running
File size: 6,057 Bytes
59ff001 3658a99 59ff001 6a0411c 59ff001 6a0411c 4366a57 5827499 c7e3ff4 70fe98e 8be5494 59ff001 e9af7f8 59ff001 5827499 c7e3ff4 e9af7f8 6a0411c 59ff001 6a0411c 59ff001 c7e3ff4 59ff001 c7e3ff4 59ff001 70fe98e e9af7f8 5827499 59ff001 e9af7f8 6a0411c 70fe98e e9af7f8 70fe98e e9af7f8 70fe98e e9af7f8 70fe98e e9af7f8 70fe98e e9af7f8 70fe98e e9af7f8 822eba7 6a0411c 59ff001 6a0411c e9af7f8 59ff001 e9af7f8 59ff001 e9af7f8 59ff001 6a0411c d45f3e7 6a0411c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import torch
import base64
import fitz # PyMuPDF
import tempfile
from io import BytesIO
from PIL import Image
from pathlib import Path
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from olmocr.data.renderpdf import render_pdf_to_base64png
from olmocr.prompts.anchor import get_anchor_text
from mathml_utils import convert_inline_and_block_latex_to_mathml
from ebooklib import epub
import json
import html
# Load model and processor
model = Qwen2VLForConditionalGeneration.from_pretrained(
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16
).eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
def process_pdf_to_html(pdf_file, title, author):
pdf_path = pdf_file.name
doc = fitz.open(pdf_path)
num_pages = len(doc)
all_text = ""
cover_img_html = ""
for i in range(num_pages):
page_num = i + 1
print(f"Processing page {page_num}...")
try:
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024)
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000)
prompt = (
"Below is the image of one page of a document, as well as some raw textual content that was previously "
"extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n"
"Do not hallucinate.\n"
"RAW_TEXT_START\n"
f"{anchor_text}\n"
"RAW_TEXT_END"
)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image = Image.open(BytesIO(base64.b64decode(image_base64)))
inputs = processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
)
inputs = {k: v.to(device) for k, v in inputs.items()}
output = model.generate(
**inputs,
temperature=0.8,
max_new_tokens=5096,
num_return_sequences=1,
do_sample=True,
)
prompt_length = inputs["input_ids"].shape[1]
new_tokens = output[:, prompt_length:].detach().cpu()
decoded = "[No output generated]"
if new_tokens is not None and new_tokens.shape[1] > 0:
try:
decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)
raw_output = decoded_list[0].strip() if decoded_list else "[No output generated]"
try:
parsed = json.loads(raw_output)
decoded = parsed.get("natural_text", raw_output)
except json.JSONDecodeError:
decoded = raw_output
except Exception as decode_error:
decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]"
else:
decoded = "[Model returned no new tokens]"
except Exception as processing_error:
decoded = f"[Processing error on page {page_num}: {str(processing_error)}]"
print(f"Decoded content for page {page_num}: {decoded}")
from latex2mathml.converter import convert as latex_to_mathml
def convert_latex(text):
import re
def replacer(match):
try:
return f"<math>{latex_to_mathml(match.group(1))}</math>"
except:
return html.escape(match.group(0))
# Convert \( ... \)
text = re.sub(r'\\\((.*?)\\\)', replacer, text)
# Convert \[ ... \]
text = re.sub(r'\\\[(.*?)\\\]', replacer, text)
return text
safe_html = html.escape(decoded).replace("\n", "<br>")
mathml_html = convert_latex(safe_html)
all_text += f"<div>{mathml_html}</div>\n"
if page_num == 1:
cover_img_html = f'<img src="data:image/png;base64,{image_base64}" alt="cover" style="max-width:100%; height:auto;"><hr>'
mathjax_script = """
<script type="text/javascript" id="MathJax-script" async
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
</script>
"""
full_html = f"""<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>{html.escape(title)}</title>
{mathjax_script}
</head>
<body>
<h1>{html.escape(title)}</h1>
<h3>{html.escape(author)}</h3>
{cover_img_html}
{all_text}
</body>
</html>
"""
with tempfile.NamedTemporaryFile(delete=False, suffix=".html", dir="/tmp", mode="w", encoding="utf-8") as tmp:
tmp.write(full_html)
return tmp.name
# Gradio Interface
iface = gr.Interface(
fn=process_pdf_to_html, # NEW FUNCTION
inputs=[
gr.File(label="Upload PDF", file_types=[".pdf"]),
gr.Textbox(label="HTML Title"),
gr.Textbox(label="Author(s)")
],
outputs=gr.File(label="Download HTML"),
title="PDF to HTML Converter (for Calibre/Kindle)",
description="Uploads a PDF, extracts text via vision+prompt, embeds it in a styled HTML file with math support. Ready for Calibre.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
allowed_paths=["/tmp"]
)
|