File size: 14,318 Bytes
10e9b7d eccf8e4 2e3dd06 3c4371f 10e9b7d 2e3dd06 e80aab9 3db6293 2e3dd06 e80aab9 31243f4 2e3dd06 31243f4 2e3dd06 4021bf3 2e3dd06 31243f4 2e3dd06 3c4371f 7e4a06b 2e3dd06 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 31243f4 3c4371f 31243f4 2e3dd06 3c4371f 31243f4 eccf8e4 2e3dd06 7d65c66 31243f4 2e3dd06 31243f4 e80aab9 31243f4 3c4371f 2e3dd06 7d65c66 31243f4 e80aab9 7d65c66 3c4371f 31243f4 2e3dd06 31243f4 2e3dd06 31243f4 2e3dd06 7d65c66 2e3dd06 31243f4 2e3dd06 31243f4 3c4371f 2e3dd06 31243f4 7d65c66 3c4371f 31243f4 e80aab9 31243f4 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e80aab9 3c4371f e80aab9 3c4371f e80aab9 2e3dd06 3c4371f 31243f4 7d65c66 31243f4 3c4371f e80aab9 31243f4 7d65c66 31243f4 e80aab9 2e3dd06 0ee0419 e514fd7 2e3dd06 e514fd7 2e3dd06 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 2e3dd06 e80aab9 31243f4 2e3dd06 31243f4 e80aab9 3c4371f 2e3dd06 7d65c66 3c4371f 7d65c66 3c4371f 2e3dd06 7d65c66 2e3dd06 7d65c66 2e3dd06 7d65c66 3c4371f 2e3dd06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import os
import gradio as gr
import requests
import inspect # Keep if you plan to use it for agent introspection later
import pandas as pd
from src.file_processing_tool import FileIdentifier
from src.speech_to_text import transcribe_audio
from src.download_utils import download_file
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DOWNLOADED_FILES_DIR = "downloaded_task_files" # Directory to store downloaded files
# Ensure the directory for downloaded files exists when the app starts
os.makedirs(DOWNLOADED_FILES_DIR, exist_ok=True)
# --- Basic Agent Definition ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
self.file_identifier = FileIdentifier()
# You might initialize other tools here if needed (e.g., spreadsheet parser, OCR)
def __call__(self, question_data: dict) -> str:
question_text = question_data.get("question")
file_url = question_data.get("file_url")
task_id = question_data.get("task_id", "unknown_task") # For unique file naming
print(f"Agent received task_id: {task_id}, question: {question_text}, file_url: {file_url}")
downloaded_file_path = None
if file_url:
print(f"File URL provided: {file_url}")
# Construct a unique filename
original_filename = file_url.split('/')[-1] if file_url else "file"
# Basic sanitization for filename
safe_original_filename = "".join(c for c in original_filename if c.isalnum() or c in ['.', '_', '-']).strip()
if not safe_original_filename: # Handle cases where sanitization leaves an empty string
safe_original_filename = "downloaded_file"
unique_filename = f"{task_id}_{safe_original_filename}"
downloaded_file_path = download_file(file_url, DOWNLOADED_FILES_DIR, filename=unique_filename)
if not downloaded_file_path:
print(f"Error: Failed to download the associated file for task {task_id} from {file_url}.")
return "Error: Failed to download the associated file."
print(f"File downloaded to: {downloaded_file_path}")
file_info = self.file_identifier.identify_file(downloaded_file_path)
print(f"File info for {downloaded_file_path}: {file_info}")
if file_info.get("error"):
return f"Error processing file: {file_info['error']}"
if file_info["determined_type"] == "audio" and file_info["suggested_action"] == "speech-to-text":
print(f"File {downloaded_file_path} identified as audio, attempting transcription...")
transcribed_text = transcribe_audio(downloaded_file_path)
if "Error during transcription" in transcribed_text: # Basic error check
print(f"Transcription error for {downloaded_file_path}: {transcribed_text}")
return f"Could not transcribe audio: {transcribed_text}"
# Placeholder: Use the question and transcribed_text to form an answer
# In a real agent, you'd use an LLM or other logic here.
answer = f"The audio file says: {transcribed_text[:200]}... (This is a placeholder answer based on transcription)"
print(f"Returning answer based on audio: {answer}")
return answer
# Add more conditions for other file types and actions
# elif file_info["determined_type"] == "spreadsheet":
# # Call your spreadsheet parser
# # data = self.spreadsheet_parser.parse(downloaded_file_path)
# # answer = self.reason_about_spreadsheet(question_text, data)
# # return answer
# pass
# elif file_info["determined_type"] == "image":
# # Call your OCR/vision tool
# # details = self.ocr_tool.analyze(downloaded_file_path)
# # answer = self.reason_about_image(question_text, details)
# # return answer
# pass
else:
warning_msg = f"File type '{file_info['determined_type']}' (action: '{file_info['suggested_action']}') not yet handled for file: {os.path.basename(downloaded_file_path)}."
print(warning_msg)
# Fallback if file type is known but not handled, or if it's an unknown type
# You might still try to answer the question if it doesn't strictly depend on the file content.
return f"File received, but type '{file_info['determined_type']}' is not yet processed by this agent. Question: {question_text}"
# Fallback or question-only processing (if no file_url or file not handled)
# This is where you'd put logic for questions that don't involve files,
# or if a file was present but not processable by the current tools.
# For GAIA, many questions will have files.
if question_text:
# Placeholder for LLM call or other reasoning for text-only questions
default_answer = f"Received question: '{question_text}'. No specific file action taken or file not processable. (Default Response)"
print(f"Agent returning default text-based answer: {default_answer}")
return default_answer
else:
# Should not happen if GAIA questions always have text or file
return "No question text provided and no file processed."
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_run_no_space_id"
print(f"Agent code reference: {agent_code}")
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=30) # Increased timeout
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text (first 500 chars): {response.text[:500] if response else 'No response object'}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question") # Can be None if file_url is primary
file_url = item.get("file_url")
if not task_id:
print(f"Skipping item with missing task_id: {item}")
continue
# Prepare the input for the agent's __call__ method
agent_input_data = {"task_id": task_id, "question": question_text, "file_url": file_url}
try:
submitted_answer = agent(agent_input_data)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text if question_text else "N/A (File-based question)",
"File URL": file_url if file_url else "N/A",
"Submitted Answer": submitted_answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text if question_text else "N/A (File-based question)",
"File URL": file_url if file_url else "N/A",
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
# Still return results_log if it has entries (e.g. all agent errors)
results_df = pd.DataFrame(results_log) if results_log else None
return "Agent did not produce any answers to submit.", results_df
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response (first 500 chars): {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Benchmark Agent Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space, then modify `src/` files (especially `BasicAgent` in `app.py`, and tool implementations) to define your agent's logic.
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Notes:**
- The agent's processing can take time, especially with file downloads and model inferences.
- This is a basic framework. For more complex agents, consider asynchronous operations, caching, and more robust error handling.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, interactive=False) # Set interactive=False for display
run_button.click(
fn=run_and_submit_all,
inputs=None, # LoginButton provides profile implicitly if used as input, but here it's handled by checking profile in the function
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (likely running locally).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (likely running locally). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for GAIA Agent Evaluation...")
# Set server_name and server_port for local development if needed, e.g. demo.launch(server_name="0.0.0.0", server_port=7860)
# For Hugging Face Spaces, share=True is often handled by the platform.
# debug=True is useful for development.
demo.launch(debug=True) |