File size: 14,318 Bytes
10e9b7d
 
eccf8e4
2e3dd06
3c4371f
10e9b7d
2e3dd06
 
 
 
e80aab9
3db6293
2e3dd06
 
 
e80aab9
31243f4
2e3dd06
31243f4
 
 
2e3dd06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021bf3
2e3dd06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
 
 
2e3dd06
3c4371f
7e4a06b
2e3dd06
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
31243f4
 
 
3c4371f
31243f4
2e3dd06
 
 
3c4371f
31243f4
eccf8e4
2e3dd06
7d65c66
31243f4
 
2e3dd06
 
31243f4
e80aab9
31243f4
 
3c4371f
2e3dd06
 
 
7d65c66
31243f4
 
e80aab9
7d65c66
 
3c4371f
31243f4
 
2e3dd06
 
 
 
 
31243f4
2e3dd06
 
 
 
31243f4
2e3dd06
7d65c66
2e3dd06
 
 
 
 
 
31243f4
2e3dd06
 
 
 
 
 
 
31243f4
 
3c4371f
2e3dd06
 
 
31243f4
7d65c66
3c4371f
31243f4
e80aab9
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
2e3dd06
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
 
2e3dd06
0ee0419
e514fd7
 
 
2e3dd06
e514fd7
 
 
 
2e3dd06
 
 
e514fd7
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
2e3dd06
e80aab9
31243f4
 
2e3dd06
31243f4
e80aab9
 
 
3c4371f
 
2e3dd06
7d65c66
3c4371f
 
7d65c66
3c4371f
2e3dd06
7d65c66
2e3dd06
7d65c66
 
 
 
2e3dd06
7d65c66
3c4371f
 
2e3dd06
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import gradio as gr
import requests
import inspect # Keep if you plan to use it for agent introspection later
import pandas as pd

from src.file_processing_tool import FileIdentifier
from src.speech_to_text import transcribe_audio
from src.download_utils import download_file

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
DOWNLOADED_FILES_DIR = "downloaded_task_files" # Directory to store downloaded files
# Ensure the directory for downloaded files exists when the app starts
os.makedirs(DOWNLOADED_FILES_DIR, exist_ok=True)

# --- Basic Agent Definition ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    def __init__(self):
        print("BasicAgent initialized.")
        self.file_identifier = FileIdentifier()
        # You might initialize other tools here if needed (e.g., spreadsheet parser, OCR)

    def __call__(self, question_data: dict) -> str:
        question_text = question_data.get("question")
        file_url = question_data.get("file_url")
        task_id = question_data.get("task_id", "unknown_task") # For unique file naming

        print(f"Agent received task_id: {task_id}, question: {question_text}, file_url: {file_url}")
        downloaded_file_path = None

        if file_url:
            print(f"File URL provided: {file_url}")
            # Construct a unique filename
            original_filename = file_url.split('/')[-1] if file_url else "file"
            # Basic sanitization for filename
            safe_original_filename = "".join(c for c in original_filename if c.isalnum() or c in ['.', '_', '-']).strip()
            if not safe_original_filename:  # Handle cases where sanitization leaves an empty string
                safe_original_filename = "downloaded_file"
            
            unique_filename = f"{task_id}_{safe_original_filename}"
            
            downloaded_file_path = download_file(file_url, DOWNLOADED_FILES_DIR, filename=unique_filename)

            if not downloaded_file_path:
                print(f"Error: Failed to download the associated file for task {task_id} from {file_url}.")
                return "Error: Failed to download the associated file."
            
            print(f"File downloaded to: {downloaded_file_path}")
            file_info = self.file_identifier.identify_file(downloaded_file_path)
            print(f"File info for {downloaded_file_path}: {file_info}")

            if file_info.get("error"):
                return f"Error processing file: {file_info['error']}"

            if file_info["determined_type"] == "audio" and file_info["suggested_action"] == "speech-to-text":
                print(f"File {downloaded_file_path} identified as audio, attempting transcription...")
                transcribed_text = transcribe_audio(downloaded_file_path)
                
                if "Error during transcription" in transcribed_text: # Basic error check
                    print(f"Transcription error for {downloaded_file_path}: {transcribed_text}")
                    return f"Could not transcribe audio: {transcribed_text}"
                
                # Placeholder: Use the question and transcribed_text to form an answer
                # In a real agent, you'd use an LLM or other logic here.
                answer = f"The audio file says: {transcribed_text[:200]}... (This is a placeholder answer based on transcription)"
                print(f"Returning answer based on audio: {answer}")
                return answer
            
            # Add more conditions for other file types and actions
            # elif file_info["determined_type"] == "spreadsheet":
            #     # Call your spreadsheet parser
            #     # data = self.spreadsheet_parser.parse(downloaded_file_path)
            #     # answer = self.reason_about_spreadsheet(question_text, data)
            #     # return answer
            #     pass
            # elif file_info["determined_type"] == "image":
            #     # Call your OCR/vision tool
            #     # details = self.ocr_tool.analyze(downloaded_file_path)
            #     # answer = self.reason_about_image(question_text, details)
            #     # return answer
            #     pass
            else:
                warning_msg = f"File type '{file_info['determined_type']}' (action: '{file_info['suggested_action']}') not yet handled for file: {os.path.basename(downloaded_file_path)}."
                print(warning_msg)
                # Fallback if file type is known but not handled, or if it's an unknown type
                # You might still try to answer the question if it doesn't strictly depend on the file content.
                return f"File received, but type '{file_info['determined_type']}' is not yet processed by this agent. Question: {question_text}"


        # Fallback or question-only processing (if no file_url or file not handled)
        # This is where you'd put logic for questions that don't involve files,
        # or if a file was present but not processable by the current tools.
        # For GAIA, many questions will have files.
        if question_text:
             # Placeholder for LLM call or other reasoning for text-only questions
            default_answer = f"Received question: '{question_text}'. No specific file action taken or file not processable. (Default Response)"
            print(f"Agent returning default text-based answer: {default_answer}")
            return default_answer
        else:
            # Should not happen if GAIA questions always have text or file
            return "No question text provided and no file processed."


def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "local_run_no_space_id"
    print(f"Agent code reference: {agent_code}")

    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=30) # Increased timeout
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        print(f"Response text (first 500 chars): {response.text[:500] if response else 'No response object'}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question") # Can be None if file_url is primary
        file_url = item.get("file_url")

        if not task_id:
            print(f"Skipping item with missing task_id: {item}")
            continue
        
        # Prepare the input for the agent's __call__ method
        agent_input_data = {"task_id": task_id, "question": question_text, "file_url": file_url}

        try:
            submitted_answer = agent(agent_input_data)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text if question_text else "N/A (File-based question)", 
                "File URL": file_url if file_url else "N/A", 
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text if question_text else "N/A (File-based question)", 
                "File URL": file_url if file_url else "N/A", 
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        # Still return results_log if it has entries (e.g. all agent errors)
        results_df = pd.DataFrame(results_log) if results_log else None
        return "Agent did not produce any answers to submit.", results_df

    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response (first 500 chars): {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# GAIA Benchmark Agent Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Clone this space, then modify `src/` files (especially `BasicAgent` in `app.py`, and tool implementations) to define your agent's logic.
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Notes:**
        - The agent's processing can take time, especially with file downloads and model inferences.
        - This is a basic framework. For more complex agents, consider asynchronous operations, caching, and more robust error handling.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True, interactive=False) # Set interactive=False for display

    run_button.click(
        fn=run_and_submit_all,
        inputs=None, # LoginButton provides profile implicitly if used as input, but here it's handled by checking profile in the function
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (likely running locally).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (likely running locally). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for GAIA Agent Evaluation...")
    # Set server_name and server_port for local development if needed, e.g. demo.launch(server_name="0.0.0.0", server_port=7860)
    # For Hugging Face Spaces, share=True is often handled by the platform.
    # debug=True is useful for development.
    demo.launch(debug=True)