HF_Agents_Final_Project / src /web_browsing_tool.py
Yago Bolivar
feat: Enhance tools with new web content extractor and improved functionality
b09a8ba
import requests
from bs4 import BeautifulSoup
from smolagents.tools import Tool
import re
import json
import logging
import time
from urllib.parse import urlparse, urljoin
import pandas as pd
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class WebBrowser(Tool):
"""
Retrieves information from online sources by browsing web pages.
Useful for extracting or summarizing web content, with special handling for structured data.
Can extract tables, lists, and key information from web pages.
"""
name = "web_browser"
description = "Fetches content from web pages with improved structured data handling. Has specialized extraction for Wikipedia. Returns text content or structured data."
inputs = {
'url': {'type': 'string', 'description': 'The URL of the web page to browse.'},
'extraction_mode': {'type': 'string', 'description': 'Mode for data extraction: "text" (default), "tables", "lists", or "structured".', 'nullable': True}
}
outputs = {'content': {'type': 'object', 'description': 'The extracted content from the web page, either as text or structured data.'}}
output_type = "object"
def __init__(self, user_agent="GAIA-Agent/1.0", *args, **kwargs):
"""
Initializes the web browser with a user agent.
Args:
user_agent (str): The User-Agent string to use for requests.
"""
super().__init__(*args, **kwargs)
self.headers = {"User-Agent": user_agent}
self.is_initialized = True
# Add a session to maintain cookies
self.session = requests.Session()
self.session.headers.update(self.headers)
def forward(self, url: str, extraction_mode: str = "text") -> dict:
"""
Fetches the content of a web page and extracts information based on the specified mode.
Args:
url (str): The URL of the web page to browse.
extraction_mode (str): The mode for data extraction - "text" (default), "tables", "lists", or "structured"
Returns:
dict: The extracted content or an error message
"""
# Validate URL
if not url.startswith(('http://', 'https://')):
return {"error": f"Invalid URL format. URL must start with http:// or https://. Received: {url}"}
try:
# Check if it's Wikipedia and use special handling
if 'wikipedia.org' in url:
return self._handle_wikipedia(url, extraction_mode)
# Process normal web pages
return self._process_regular_webpage(url, extraction_mode)
except requests.exceptions.HTTPError as http_err:
return {"error": f"HTTP error occurred while fetching {url}: {http_err}"}
except requests.exceptions.ConnectionError as conn_err:
return {"error": f"Connection error occurred while fetching {url}: {conn_err}"}
except requests.exceptions.Timeout as timeout_err:
return {"error": f"Timeout occurred while fetching {url}: {timeout_err}"}
except requests.exceptions.RequestException as req_err:
return {"error": f"An unexpected error occurred while fetching {url}: {req_err}"}
except Exception as e:
return {"error": f"An unexpected error occurred during parsing of {url}: {e}"}
def _process_regular_webpage(self, url, extraction_mode):
"""Process a regular (non-Wikipedia) webpage"""
response = self.session.get(url, timeout=15)
response.raise_for_status()
# Use BeautifulSoup to parse the HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Remove script and style elements
for script_or_style in soup(["script", "style"]):
script_or_style.decompose()
if extraction_mode == "text":
return self._extract_text(soup, url)
elif extraction_mode == "tables":
return self._extract_tables(soup, url)
elif extraction_mode == "lists":
return self._extract_lists(soup, url)
elif extraction_mode == "structured":
return self._extract_structured_data(soup, url)
else:
return {"error": f"Unknown extraction mode: {extraction_mode}"}
def _handle_wikipedia(self, url, extraction_mode):
"""Special handling for Wikipedia pages"""
# For Wikipedia, try to use the API instead of scraping the HTML
parsed_url = urlparse(url)
if not parsed_url.netloc.endswith('wikipedia.org'):
return self._process_regular_webpage(url, extraction_mode)
# Extract the title from the URL path
path_parts = parsed_url.path.split('/')
if len(path_parts) < 3 or path_parts[1] != 'wiki':
# Not a standard Wikipedia article URL
return self._process_regular_webpage(url, extraction_mode)
title = path_parts[2]
lang = parsed_url.netloc.split('.')[0]
# Use Wikipedia API to get structured content
api_url = f"https://{lang}.wikipedia.org/api/rest_v1/page/summary/{title}"
try:
logger.info(f"Fetching Wikipedia API data from {api_url}")
api_response = self.session.get(api_url, timeout=15)
api_response.raise_for_status()
api_data = api_response.json()
# Basic information from the API
wiki_data = {
"title": api_data.get("title", ""),
"description": api_data.get("description", ""),
"extract": api_data.get("extract", ""),
"url": api_data.get("content_urls", {}).get("desktop", {}).get("page", url)
}
# If we need more detailed data beyond the summary
if extraction_mode in ["tables", "structured"]:
# Get the full HTML anyway for tables and other structured data
response = self.session.get(url, timeout=15)
response.raise_for_status()
soup = BeautifulSoup(response.content, 'html.parser')
# Add tables to the response
tables = self._extract_tables(soup, url, return_raw=False)
wiki_data["tables"] = tables.get("tables", [])
# For "structured" mode, add sections, infobox and other elements
if extraction_mode == "structured":
wiki_data["infobox"] = self._extract_wikipedia_infobox(soup)
wiki_data["sections"] = self._extract_wikipedia_sections(soup)
return {
"source": "wikipedia_api_enhanced",
"url": url,
"data": wiki_data
}
# For basic text, return the API data
return {
"source": "wikipedia_api",
"url": url,
"data": wiki_data
}
except (requests.exceptions.RequestException, ValueError) as e:
logger.warning(f"Wikipedia API request failed: {e}. Falling back to HTML scraping.")
# Fallback to normal HTML processing
return self._process_regular_webpage(url, extraction_mode)
def _extract_text(self, soup, url):
"""Extract clean text from the page"""
text_from_soup = soup.get_text(separator='\n', strip=True)
# Convert multiple newlines to a single newline and clean spaces within lines
cleaned_lines = []
for line in text_from_soup.splitlines():
line = line.strip() # Strip leading/trailing whitespace
if line: # Only process non-empty lines
# Replace multiple spaces with a single space
cleaned_line = ' '.join(line.split())
cleaned_lines.append(cleaned_line)
text = '\n'.join(cleaned_lines)
if not text:
return {"error": f"No text content found at {url}."}
return {
"source": "web_page",
"url": url,
"content_type": "text",
"text": text
}
def _extract_tables(self, soup, url, return_raw=True):
"""Extract tables from the page"""
tables = []
# Find all table elements
html_tables = soup.find_all('table')
for i, table in enumerate(html_tables):
try:
# Try to convert to a pandas DataFrame
dfs = pd.read_html(str(table))
if dfs:
# Convert each DataFrame to a dict for JSON serialization
for j, df in enumerate(dfs):
# Clean column names
df.columns = [str(col).strip() for col in df.columns]
# Convert DataFrame to dict
table_dict = {
"table_id": f"table_{i}_{j}",
"headers": df.columns.tolist(),
"rows": df.values.tolist(),
}
tables.append(table_dict)
except Exception as e:
logger.warning(f"Failed to parse table {i}: {e}")
# Try a manual extraction
try:
headers = []
header_row = table.find('tr')
if header_row:
headers = [th.get_text(strip=True) for th in header_row.find_all(['th', 'td'])]
rows = []
for tr in table.find_all('tr'):
row = [td.get_text(strip=True) for td in tr.find_all(['td', 'th'])]
if row and row != headers: # Skip header row in data
rows.append(row)
if headers or rows:
tables.append({
"table_id": f"table_{i}_manual",
"headers": headers,
"rows": rows
})
except Exception:
continue # Skip if manual extraction also fails
if return_raw:
return {
"source": "web_page",
"url": url,
"content_type": "tables",
"table_count": len(tables),
"tables": tables
}
else:
return {"tables": tables}
def _extract_lists(self, soup, url):
"""Extract lists from the page"""
lists = []
# Find all ul and ol elements
for list_type in ['ul', 'ol']:
list_elements = soup.find_all(list_type, recursive=True)
for i, list_elem in enumerate(list_elements):
# Skip nested lists to avoid duplication
if list_elem.parent.name in ['li', 'ul', 'ol']:
continue
items = []
for li in list_elem.find_all('li', recursive=False):
# Get text but exclude any nested lists
for nested_list in li.find_all(['ul', 'ol']):
nested_list.decompose()
item_text = li.get_text(strip=True)
if item_text:
items.append(item_text)
if items:
lists.append({
"list_id": f"{list_type}_{i}",
"list_type": "ordered" if list_type == "ol" else "unordered",
"items": items
})
return {
"source": "web_page",
"url": url,
"content_type": "lists",
"list_count": len(lists),
"lists": lists
}
def _extract_structured_data(self, soup, url):
"""Extract various types of structured data from the page"""
result = {
"source": "web_page",
"url": url,
"content_type": "structured",
"title": soup.title.string if soup.title else "",
"meta_description": "",
}
# Extract meta description
meta_desc = soup.find('meta', attrs={'name': 'description'})
if meta_desc:
result["meta_description"] = meta_desc.get('content', '')
# Extract main text content
text_result = self._extract_text(soup, url)
if "text" in text_result:
result["text"] = text_result["text"]
# Extract tables
tables_result = self._extract_tables(soup, url, return_raw=False)
result["tables"] = tables_result.get("tables", [])
# Extract lists
lists_result = self._extract_lists(soup, url)
result["lists"] = lists_result.get("lists", [])
# Extract headings for document structure
headings = []
for i, heading in enumerate(soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6'])):
headings.append({
"id": f"heading_{i}",
"level": int(heading.name[1]),
"text": heading.get_text(strip=True)
})
result["headings"] = headings
# Look for JSON-LD structured data
json_ld_data = []
for script in soup.find_all('script', type='application/ld+json'):
try:
json_data = json.loads(script.string)
json_ld_data.append(json_data)
except (json.JSONDecodeError, ValueError):
continue
if json_ld_data:
result["structured_data"] = json_ld_data
return result
def _extract_wikipedia_infobox(self, soup):
"""Extract information from Wikipedia infobox"""
infobox = {}
# Look for the infobox table
infobox_table = soup.find('table', class_=['infobox', 'vcard'])
if infobox_table:
for row in infobox_table.find_all('tr'):
# Look for th/td pairs
header = row.find('th')
value = row.find('td')
if header and value:
key = header.get_text(strip=True)
# Clean up the value text
for sup in value.find_all('sup'):
sup.decompose() # Remove reference superscripts
val = value.get_text(strip=True)
if key and val:
infobox[key] = val
return infobox
def _extract_wikipedia_sections(self, soup):
"""Extract sections and their content from Wikipedia"""
sections = []
current_section = None
# Find all headings
headings = soup.find_all(['h1', 'h2', 'h3', 'h4', 'h5', 'h6'])
for heading in headings:
# Skip non-content headings
if heading.get('id') in ['firstHeading', 'mw-toc-heading']:
continue
level = int(heading.name[1])
title = heading.get_text(strip=True)
# Start a new section
current_section = {
"level": level,
"title": title,
"content": ""
}
# Get content until next heading
content_elements = []
sibling = heading.next_sibling
while sibling and not (sibling.name and sibling.name.startswith('h')):
if sibling.name in ['p', 'ul', 'ol']:
content_elements.append(sibling.get_text(strip=True))
sibling = sibling.next_sibling
if content_elements:
current_section["content"] = "\n".join(content_elements)
sections.append(current_section)
return sections
if __name__ == '__main__':
browser = WebBrowser() # Instantiation remains the same for testing
# Example usage:
# Note: For a real agent, the URL would come from the task or a search step.
# This example uses a known Wikipedia page for demonstration.
# For tasks like "How many studio albums were published by Mercedes Sosa...",
# the agent would first need to find the relevant Wikipedia URL.
test_url_wikipedia = "https://en.wikipedia.org/wiki/Mercedes_Sosa"
print(f"--- Browsing: {test_url_wikipedia} ---")
# For testing, call 'forward' directly
content_wikipedia = browser.forward(test_url_wikipedia)
if content_wikipedia.startswith("Error:"):
print(content_wikipedia)
else:
# Print first 1000 characters for brevity in example
print(content_wikipedia[:1000] + "..." if len(content_wikipedia) > 1000 else content_wikipedia)
print("\n--- Example with a non-existent page ---")
test_url_non_existent = "http://example.com/nonexistentpage12345.html"
content_non_existent = browser.forward(test_url_non_existent)
print(content_non_existent)
print("\n--- Example with an invalid URL format ---")
test_url_invalid_format = "www.google.com"
content_invalid_format = browser.forward(test_url_invalid_format)
print(content_invalid_format)