Spaces:
Sleeping
Sleeping
File size: 10,072 Bytes
69bec57 2996553 69bec57 2996553 69bec57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import hydra
import os
import pathlib
from pathlib import Path
import sys
import gradio as gr
import pandas as pd
from rdkit import Chem
from rdkit.Chem import RDConfig, Descriptors, Lipinski, Crippen
from deepscreen.predict import predict
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
ROOT = Path.cwd()
# TODO refactor caching with LRU
# MOL_MAP = {}
# def cached_mol(smiles):
# if smiles not in MOL_MAP:
# MOL_MAP.update({smiles: Chem.MolFromSmiles(smiles)})
# return MOL_MAP.get(smiles)
def sa_score(row):
return sascorer.calculateScore(Chem.MolFromSmiles(row['X1']))
def mw(row):
return Chem.Descriptors.MolWt(Chem.MolFromSmiles(row['X1']))
def hbd(row):
return Lipinski.NumHDonors(Chem.MolFromSmiles(row['X1']))
def hba(row):
return Lipinski.NumHAcceptors(Chem.MolFromSmiles(row['X1']))
def logp(row):
return Crippen.MolLogP(Chem.MolFromSmiles(row['X1']))
SCORE_MAP = {
'SAscore': sa_score,
'RAscore': None, # https://github.com/reymond-group/RAscore
'SCScore': None, # https://pubs.acs.org/doi/10.1021/acs.jcim.7b00622
'LogP': logp, # https://www.rdkit.org/docs/source/rdkit.Chem.Crippen.html
'MW': mw, # https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html
'HBD': hbd, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
'HBA': hba, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
'TopoPSA': None, # http://mordred-descriptor.github.io/documentation/master/api/mordred.TopoPSA.html
}
FILTER_MAP = {
'PAINS filter': None,
"Lipinski's rule of five": None, # https://gist.github.com/strets123/fdc4db6d450b66345f46
'ADMET filter': None,
'TCL filter': None
}
TASK_MAP = {
'Drug-target interaction': 'binary',
'Drug-target binding affinity': 'regression',
}
PRESET_MAP = {
'DeepDTA': 'deep_dta',
'GraphDTA': 'graph_dta'
}
TARGET_FAMILY_MAP = {
'Auto-detect': 'detect',
'Manually-labelled': 'labelled',
'Library-labelled': 'labelled',
'Kinases': 'kinases',
'Non-kinase enzymes': 'non-kinase_enzymes',
'Membrane receptors': 'membrane_receptors',
'Nuclear receptors': 'nuclear_receptors',
'Ion channels': 'ion_channels',
'Other protein targets': 'other_protein_targets',
'Kinases (auto-detected)': 'kinases',
'Non-kinase enzymes (auto-detected)': 'non-kinase_enzymes',
'Membrane receptors (auto-detected)': 'membrane_receptors',
'Nuclear receptors (auto-detected)': 'nuclear_receptors',
'Ion channels (auto-detected)': 'ion_channels',
'Other protein targets (auto-detected)': 'other_protein_targets',
'Indiscriminate': 'indiscriminate'
}
TARGET_LIBRARY_MAP = {
'STITCH': 'stitch.csv',
'Drug Repurposing Hub': 'drug_repurposing_hub.csv',
}
DRUG_LIBRARY_MAP = {
'ChEMBL': 'chembl.csv',
'DrugBank': 'drug_bank.csv',
}
MODE_LIST = [
'Drug screening',
'Drug repurposing',
'Drug-target pair'
]
def predictions_to_df(predictions):
predictions = [pd.DataFrame(prediction) for prediction in predictions]
prediction_df = pd.concat(predictions, ignore_index=True)
return prediction_df
def submit_predict(predict_data, task, preset, target_family):
task = TASK_MAP[task]
preset = PRESET_MAP[preset]
target_family = TARGET_FAMILY_MAP[target_family]
match target_family:
case 'labelled':
pass # target_family_list = ...
case 'detect':
pass # target_family_list = ...
case _:
target_family_list = [target_family]
prediction_df = pd.DataFrame()
for target_family in target_family_list:
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
cfg = hydra.compose(
config_name="webserver_inference",
overrides=[
f"task={task}",
f"preset={preset}",
f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt",
f"data.data_file='{str(predict_data)}'",
]
)
predictions, _ = predict(cfg)
prediction_df = pd.concat([prediction_df, predictions_to_df(predictions)])
return [gr.DataFrame(value=prediction_df, visible=True), gr.Tabs(selected=1)]
# Define a function that takes a CSV output and a list of analytical utility functions as inputs
def submit_report(df, score_list, filter_list):
# Loop through the list of functions and apply them to the dataframe
for filter_name in filter_list:
gr.Info(f'Applying {filter_name}...')
for score_name in score_list:
gr.Info(f'Calculating {score_name}...')
# Apply the function to the dataframe and assign the result to a new column
df[score_name] = df.apply(SCORE_MAP[score_name], axis=1)
# Return the dataframe as a table
return [gr.DataFrame(visible=False), gr.DataFrame(value=df, visible=True)]
def change_layout(mode):
match mode:
case "Drug screening":
return [
gr.Row(visible=True),
gr.Row(visible=False),
gr.Row(visible=False),
gr.Dropdown(choices=[
'Auto-detect',
'Kinases',
'Non-kinase enzymes',
'Membrane receptors',
'Nuclear receptors',
'Ion channels',
'Other protein targets',
'Indiscriminate'
])
]
case "Drug repurposing":
return [
gr.Row(visible=False),
gr.Row(visible=True),
gr.Row(visible=False),
gr.Dropdown(choices=[
'Library-labelled',
'Indiscriminate'
])
]
case "Drug-target pair":
return [
gr.Row(visible=False),
gr.Row(visible=False),
gr.Row(visible=True),
gr.Dropdown(choices=[
'Auto-detect',
'Manually-labelled',
'Indiscriminate'
])
]
with gr.Blocks(theme=gr.themes.Soft(spacing_size="sm", text_size='md'), title='DeepScreen') as demo:
with gr.Tabs() as tabs:
with gr.TabItem(label='Inference', id=0) as inference:
gr.Markdown('''
# <center>DeepScreen Inference Service</center>
DeepScreen for predicting drug-target interaction/binding affinity.
''')
mode = gr.Radio(label='Mode', choices=MODE_LIST, value='Drug screening')
with gr.Row(visible=True) as drug_screening:
with gr.Column():
target = gr.Textbox(label='Target FASTA sequence')
drug_library = gr.Dropdown(label='Drug library', choices=DRUG_LIBRARY_MAP.keys())
# Modify the pd df directly with df['X2'] = target
with gr.Row(visible=False) as drug_repurposing:
with gr.Column():
drug = gr.Textbox(label='Drug SMILES sequence')
target_library = gr.Dropdown(label='Target library', choices=TARGET_LIBRARY_MAP.keys())
# Modify the pd df directly with df['X1'] = drug
with gr.Row(visible=False) as drug_target_pair:
predict_data = gr.File(label='Prediction dataset file', file_count="single", type='filepath', height=50)
with gr.Row(visible=True):
task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
target_family = gr.Dropdown(choices=[
'Auto-detect',
'Kinases',
'Non-kinase enzymes',
'Membrane receptors',
'Nuclear receptors',
'Ion channels',
'Other protein targets',
'Indiscriminate'
], label='Target family')
with gr.Row(visible=True):
predict_btn = gr.Button("Predict", variant="primary")
with gr.TabItem(label='Report', id=1) as report:
gr.Markdown('''
# <center>DeepScreen Virtual Screening Report</center>
Analytic report for virtual screening predictions.
''')
with gr.Row():
scores = gr.CheckboxGroup(SCORE_MAP.keys(), label='Scores')
filters = gr.CheckboxGroup(FILTER_MAP.keys(), label='Filters')
with gr.Row():
df_original = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)
df_report = gr.Dataframe(type="pandas", interactive=False, height=500, visible=False)
with gr.Row():
clear_btn = gr.ClearButton()
analyze_btn = gr.Button("Report", variant="primary")
mode.change(change_layout, mode, [drug_screening, drug_repurposing, drug_target_pair, target_family], show_progress=False)
predict_btn.click(fn=submit_predict, inputs=[predict_data, task, preset, target_family], outputs=[df_original, tabs])
analyze_btn.click(fn=submit_report, inputs=[df_original, scores, filters], outputs=[df_original, df_report])
# js = """function () {
# gradioURL = window.location.href
# if (!gradioURL.endsWith('?__theme=light')) {
# window.location.replace(gradioURL + '?__theme=light');
# }
# }"""
js="""
() => {
document.body.classList.remove('dark');
document.querySelector('gradio-app').style.backgroundColor = 'var(--color-background-primary)'
}
"""
demo.load(None, None, None, js=js)
demo.close()
demo.launch(debug=True) |