Spaces:
Sleeping
Sleeping
File size: 42,819 Bytes
52318e2 69bec57 52318e2 2996553 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 69bec57 52318e2 2996553 52318e2 2996553 52318e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 |
import hashlib
import json
import textwrap
import threading
from math import pi
from uuid import uuid4
import io
import os
import pathlib
from pathlib import Path
import sys
from Bio import AlignIO, SeqIO
# from email_validator import validate_email
import gradio as gr
import hydra
import pandas as pd
import plotly.express as px
import requests
from requests.adapters import HTTPAdapter, Retry
from rdkit import Chem
from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools
from rdkit.Chem.Scaffolds import MurckoScaffold
import seaborn as sns
import swifter
from tqdm.auto import tqdm
from deepscreen.data.dti import rdkit_canonicalize, validate_seq_str, FASTA_PAT, SMILES_PAT
from deepscreen.predict import predict
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
ROOT = Path.cwd()
DATA_PATH = Path("./") # Path("/data")
DF_FOR_REPORT = pd.DataFrame()
pd.set_option('display.float_format', '{:.3f}'.format)
PandasTools.molRepresentation = 'svg'
PandasTools.drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
PandasTools.drawOptions.clearBackground = False
PandasTools.drawOptions.bondLineWidth = 1.5
PandasTools.drawOptions.explicitMethyl = True
PandasTools.drawOptions.singleColourWedgeBonds = True
PandasTools.drawOptions.useCDKAtomPalette()
PandasTools.molSize = (128, 128)
SESSION = requests.Session()
ADAPTER = HTTPAdapter(max_retries=Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504]))
SESSION.mount('http://', ADAPTER)
SESSION.mount('https://', ADAPTER)
# SCHEDULER = BackgroundScheduler()
UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}'
CSS = """
.help-tip {
position: absolute;
display: block;
top: 0px;
right: 0px;
text-align: center;
background-color: #29b6f6;
border-radius: 50%;
width: 24px;
height: 24px;
font-size: 12px;
line-height: 26px;
cursor: default;
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
}
.help-tip:hover {
cursor: pointer;
background-color: #ccc;
}
.help-tip:before {
content: '?';
font-weight: 700;
color: #fff;
z-index: 100;
}
.help-tip p {
visibility: hidden;
opacity: 0;
text-align: left;
background-color: #039be5;
padding: 20px;
width: 300px;
position: absolute;
border-radius: 4px;
right: -4px;
color: #fff;
font-size: 13px;
line-height: normal;
transform: scale(0.7);
transform-origin: 100% 0%;
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
z-index: 100;
}
.help-tip:hover p {
cursor: default;
visibility: visible;
opacity: 1;
transform: scale(1.0);
}
.help-tip p:before {
position: absolute;
content: '';
width: 0;
height: 0;
border: 6px solid transparent;
border-bottom-color: #039be5;
right: 10px;
top: -12px;
}
.help-tip p:after {
width: 100%;
height: 40px;
content: '';
position: absolute;
top: -5px;
left: 0;
}
.help-tip a {
color: #fff;
font-weight: 700;
}
.help-tip a:hover, .help-tip a:focus {
color: #fff;
text-decoration: underline;
}
.upload_button {
background-color: #008000;
}
.absolute {
position: absolute;
}
#example {
padding: 0;
background: none;
border: none;
text-decoration: underline;
box-shadow: none;
text-align: left !important;
display: inline-block !important;
}
footer {
visibility: hidden
}
"""
class HelpTip:
def __new__(cls, text):
return gr.HTML(elem_classes="help-tip",
value=f'<p>{text}</p>'
)
def sa_score(row):
return sascorer.calculateScore((row['Compound']))
def mw(row):
return Chem.Descriptors.MolWt((row['Compound']))
def hbd(row):
return Lipinski.NumHDonors((row['Compound']))
def hba(row):
return Lipinski.NumHAcceptors((row['Compound']))
def logp(row):
return Crippen.MolLogP((row['Compound']))
SCORE_MAP = {
'SAscore': sa_score,
'RAscore': None, # https://github.com/reymond-group/RAscore
'SCScore': None, # https://pubs.acs.org/doi/10.1021/acs.jcim.7b00622
'LogP': logp, # https://www.rdkit.org/docs/source/rdkit.Chem.Crippen.html
'MW': mw, # https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors.html
'HBD': hbd, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
'HBA': hba, # https://www.rdkit.org/docs/source/rdkit.Chem.Lipinski.html
'TopoPSA': None, # http://mordred-descriptor.github.io/documentation/master/api/mordred.TopoPSA.html
}
FILTER_MAP = {
'PAINS filter': None,
"Lipinski's rule of five": None, # https://gist.github.com/strets123/fdc4db6d450b66345f46
'ADMET filter': None,
'TCL filter': None
}
TASK_MAP = {
'Drug-target interaction': 'binary',
'Drug-target binding affinity': 'regression',
}
PRESET_MAP = {
'DeepDTA': 'deep_dta',
'DeepConvDTI': 'deep_conv_dti',
'GraphDTA': 'graph_dta',
'MGraphDTA': 'm_graph_dta',
'HyperAttentionDTI': 'hyper_attention_dti',
'MolTrans': 'mol_trans',
'TransformerCPI': 'transfomer_cpi',
'TransformerCPI2': 'transformer_cpi_2',
'DrugBAN': 'drug_ban',
'DrugVQA(Seq)': 'drug_vqa'
}
TARGET_FAMILY_MAP = {
'General': 'general',
'Kinase': 'kinases',
'Non-kinase enzyme': 'non-kinase_enzymes',
'Membrane receptor': 'membrane_receptors',
'Nuclear receptor': 'nuclear_receptors',
'Ion channel': 'ion_channels',
'Other protein targets': 'other_protein_targets',
}
TARGET_LIBRARY_MAP = {
# 'STITCH': 'stitch.csv',
'ChEMBL33 (all species)': 'ChEMBL33_all_spe_single_prot_info.csv',
'DrugBank (Human)': 'drugbank_human_py_annot.csv',
}
DRUG_LIBRARY_MAP = {
# 'ChEMBL': 'chembl.csv',
'DrugBank (Human)': 'drugbank_human_py_annot.csv',
}
MODE_LIST = [
'Drug screening',
'Drug repurposing',
'Drug-target pair'
]
COLUMN_ALIASES = {
'X1': 'Drug SMILES',
'X2': 'Target FASTA',
'ID1': 'Drug ID',
'ID2': 'Target ID',
}
URL = "https://ciddr-lab.ac.cn/deepseqreen"
def validate_columns(df, mandatory_cols):
missing_cols = [col for col in mandatory_cols if col not in df.columns]
if missing_cols:
error_message = (f"The following mandatory columns are missing "
f"in the uploaded dataset: {str(['X1', 'X2']).strip('[]')}.")
raise gr.Error(error_message)
def send_email(receiver, msg):
pass
def submit_predict(predict_filepath, task, preset, target_family, flag, progress=gr.Progress(track_tqdm=True)):
if flag:
job_id = flag
global COLUMN_ALIASES
task = TASK_MAP[task]
preset = PRESET_MAP[preset]
target_family = TARGET_FAMILY_MAP[target_family]
# email_hash = hashlib.sha256(email.encode()).hexdigest()
COLUMN_ALIASES = COLUMN_ALIASES | {
'Y': 'Actual interaction' if task == 'binary' else 'Actual affinity',
'Y^': 'Predicted interaction' if task == 'binary' else 'Predicted affinity'
}
# target_family_list = [target_family]
# for family in target_family_list:
# try:
prediction_df = pd.DataFrame()
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
cfg = hydra.compose(
config_name="webserver_inference",
overrides=[f"task={task}",
f"preset={preset}",
f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt",
f"data.data_file='{str(predict_filepath)}'"])
predictions, _ = predict(cfg)
predictions = [pd.DataFrame(prediction) for prediction in predictions]
prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
predictions_file = f'{job_id}_predictions.csv'
prediction_df.to_csv(predictions_file)
return [gr.Markdown(visible=True),
gr.File(predictions_file),
gr.State(False)]
#
# except Exception as e:
# raise gr.Error(str(e))
# email_lock = Path(f"outputs/{email_hash}.lock")
# with open(email_lock, "w") as file:
# record = {
# "email": email,
# "job_id": job_id
# }
# json.dump(record, file)
# def run_predict():
# TODO per-user submit usage
# # email_lock = Path(f"outputs/{email_hash}.lock")
# # with open(email_lock, "w") as file:
# # record = {
# # "email": email,
# # "job_id": job_id
# # }
# # json.dump(record, file)
#
# job_lock = DATA_PATH / f"outputs/{job_id}.lock"
# with open(job_lock, "w") as file:
# pass
#
# try:
# prediction_df = pd.DataFrame()
# for family in target_family_list:
# with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
# cfg = hydra.compose(
# config_name="webserver_inference",
# overrides=[f"task={task}",
# f"preset={preset}",
# f"ckpt_path=resources/checkpoints/{preset}-{task}-{family}.ckpt",
# f"data.data_file='{str(predict_dataset)}'"])
#
# predictions, _ = predict(cfg)
# predictions = [pd.DataFrame(prediction) for prediction in predictions]
# prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
# prediction_df.to_csv(f'outputs/{job_id}.csv')
# # email_lock.unlink()
# job_lock.unlink()
#
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) completed successfully. You may retrieve the '
# f'results and generate an analytical report at {URL} using the job id within 48 hours.')
# gr.Info(msg)
# except Exception as e:
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) failed due to an error: "{str(e)}." You may '
# f'reach out to the author about the error through email ([email protected]).')
# raise gr.Error(str(e))
# finally:
# send_email(email, msg)
#
# # Run "predict" asynchronously
# threading.Thread(target=run_predict).start()
#
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) started running. You may retrieve the results '
# f'and generate an analytical report at {URL} using the job id once the job is done. Only one job '
# f'per user is allowed at the same time.')
# send_email(email, msg)
# # Return the job id first
# return [
# gr.Blocks(visible=False),
# gr.Markdown(f"Your prediction job is running... "
# f"You may stay on this page or come back later to retrieve the results "
# f"Once you receive our email notification."),
# ]
def update_df(file, progress=gr.Progress(track_tqdm=True)):
global DF_FOR_REPORT
if file is not None:
df = pd.read_csv(file)
if df['X1'].nunique() > 1:
df['Scaffold SMILES'] = df['X1'].swifter.progress_bar(
desc=f"Calculating scaffold...").apply(MurckoScaffold.MurckoScaffoldSmilesFromSmiles)
# Add a new column with RDKit molecule objects
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='X1', molCol='Compound',
includeFingerprints=False)
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='Scaffold SMILES', molCol='Scaffold',
includeFingerprints=False)
DF_FOR_REPORT = df.copy()
pie_chart = None
value = None
if 'Y^' in DF_FOR_REPORT.columns:
value = 'Y^'
elif 'Y' in DF_FOR_REPORT.columns:
value = 'Y'
if value:
if DF_FOR_REPORT['X1'].nunique() > 1 >= DF_FOR_REPORT['X2'].nunique():
pie_chart = create_pie_chart(DF_FOR_REPORT, category='Scaffold SMILES', value=value, top_k=100)
elif DF_FOR_REPORT['X2'].nunique() > 1 >= DF_FOR_REPORT['X1'].nunique():
pie_chart = create_pie_chart(DF_FOR_REPORT, category='Target family', value=value, top_k=100)
return create_html_report(DF_FOR_REPORT), pie_chart
else:
return gr.HTML(''), gr.Plot()
def create_html_report(df, progress=gr.Progress(track_tqdm=True)):
cols_left = ['ID2', 'Y', 'Y^', 'ID1', 'Compound', 'Scaffold', 'Scaffold SMILES', ]
cols_right = ['X1', 'X2']
cols_left = [col for col in cols_left if col in df.columns]
cols_right = [col for col in cols_right if col in df.columns]
df = df[cols_left + (df.columns.drop(cols_left + cols_right).tolist()) + cols_right]
df['X2'] = df['X2'].apply(wrap_text)
df.rename(COLUMN_ALIASES, inplace=True)
styled_df = df.style
# styled_df = df.style.format("{:.2f}")
colors = sns.color_palette('husl', len(df.columns))
for i, col in enumerate(df.columns):
if pd.api.types.is_numeric_dtype(df[col]):
styled_df = styled_df.background_gradient(subset=col, cmap=sns.light_palette(colors[i], as_cmap=True))
# Return the DataFrame as HTML
PandasTools.RenderImagesInAllDataFrames(images=True)
html = df.to_html()
return f'<div style="overflow:auto; height: 500px;">{html}</div>'
# return gr.HTML(pn.widgets.Tabulator(df).embed())
# def create_pie_chart(df, category, value, top_k):
# df.rename(COLUMN_ALIASES, inplace=True)
# # Select the top_k records based on the value_col
# top_k_df = df.nlargest(top_k, value)
#
# # Count the frequency of each unique value in the category_col column
# category_counts = top_k_df[category].value_counts()
#
# # Convert the counts to a DataFrame
# data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values})
#
# # Calculate the angle for each category
# data['angle'] = data['value']/data['value'].sum() * 2*pi
#
# # Assign colors
# data['color'] = Spectral11[0:len(category_counts)]
#
# # Create the plot
# p = figure(height=350, title="Pie Chart", toolbar_location=None,
# tools="hover", tooltips="@{}: @value".format(category), x_range=(-0.5, 1.0))
#
# p.wedge(x=0, y=1, radius=0.4,
# start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
# line_color="white", fill_color='color', legend_field=category, source=data)
#
# p.axis.axis_label = None
# p.axis.visible = False
# p.grid.grid_line_color = None
#
# return p
def create_pie_chart(df, category, value, top_k):
df = df.copy()
df.rename(COLUMN_ALIASES, inplace=True)
value = COLUMN_ALIASES.get(value, value)
# Select the top_k records based on the value_col
top_k_df = df.nlargest(top_k, value)
# Count the frequency of each unique value in the category_col column
category_counts = top_k_df[category].value_counts()
# Convert the counts to a DataFrame
data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values})
# Create the plot
fig = px.pie(data, values='value', names=category, title=f'Top-{top_k} {category} in {value}')
fig.update_traces(textposition='inside', textinfo='percent+label')
return fig
def submit_report(score_list, filter_list, progress=gr.Progress(track_tqdm=True)):
df = DF_FOR_REPORT.copy()
try:
for filter_name in filter_list:
pass
for score_name in score_list:
df[score_name] = df.swifter.progress_bar(desc=f"Calculating {score_name}").apply(
SCORE_MAP[score_name], axis=1)
pie_chart = None
value = None
if 'Y^' in df.columns:
value = 'Y^'
elif 'Y' in df.columns:
value = 'Y'
if value:
if df['X1'].nunique() > 1 >= df['X2'].nunique():
pie_chart = create_pie_chart(df, category='Scaffold SMILES', value=value, top_k=100)
elif df['X2'].nunique() > 1 >= df['X1'].nunique():
pie_chart = create_pie_chart(df, category='Target famiy', value=value, top_k=100)
return create_html_report(df), pie_chart
except Exception as e:
raise gr.Error(str(e))
def check_job_status(job_id):
job_lock = DATA_PATH / f"{job_id}.lock"
job_file = DATA_PATH / f"{job_id}.csv"
if job_lock.is_file():
return {gr.Markdown(f"Your job ({job_id}) is still running... "
f"You may stay on this page or come back later to retrieve the results "
f"Once you receive our email notification."),
None,
None
}
elif job_file.is_file():
return {gr.Markdown(f"Your job ({job_id}) is done! Redirecting you to generate reports..."),
gr.Tabs(selected=3),
gr.File(str(job_lock))}
def wrap_text(text, line_length=60):
wrapper = textwrap.TextWrapper(width=line_length)
if text.startswith('>'):
sections = text.split('>')
wrapped_sections = []
for section in sections:
if not section:
continue
lines = section.split('\n')
seq_header = lines[0]
wrapped_seq = wrapper.fill(''.join(lines[1:]))
wrapped_sections.append(f">{seq_header}\n{wrapped_seq}")
return '\n'.join(wrapped_sections)
else:
return wrapper.fill(text)
def unwrap_text(text):
return text.strip.replece('\n', '')
def smiles_from_sdf(sdf_path):
with Chem.SDMolSupplier(sdf_path) as suppl:
return Chem.MolToSmiles(suppl[0])
theme = gr.themes.Base(spacing_size="sm", text_size='md').set(
background_fill_primary='#dfe6f0',
background_fill_secondary='#dfe6f0',
checkbox_label_background_fill='#dfe6f0',
checkbox_label_background_fill_hover='#dfe6f0',
checkbox_background_color='white',
checkbox_border_color='#4372c4',
border_color_primary='#4372c4',
border_color_accent='#4372c4',
button_primary_background_fill='#4372c4',
button_primary_text_color='white',
button_secondary_border_color='#4372c4',
body_text_color='#4372c4',
block_title_text_color='#4372c4',
block_label_text_color='#4372c4',
block_info_text_color='#505358',
block_border_color=None,
input_border_color='#4372c4',
panel_border_color='#4372c4',
input_background_fill='white',
code_background_fill='white',
)
with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
run_state = gr.State(value=False)
screen_flag = gr.State(value=False)
identify_flag = gr.State(value=False)
infer_flag = gr.State(value=False)
with gr.Tabs() as tabs:
with gr.TabItem(label='Drug hit screening', id=0):
gr.Markdown('''
# <center>DeepSEQreen Drug Hit Screening</center>
<center>
To predict interactions/binding affinities of a single target against a library of drugs.
</center>
''')
with gr.Blocks() as screen_block:
with gr.Column() as screen_page:
with gr.Row():
with gr.Column(scale=4, variant='panel'):
target_fasta = gr.Code(label='Target sequence FASTA',
interactive=True, lines=5)
example_target = gr.Button(value='Example: Human MAPK14', elem_id='example')
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
with gr.Row():
target_input_type = gr.Radio(label='Target input type',
choices=['Sequence', 'UniProt ID', 'Gene symbol'],
value='Sequence')
target_query = gr.Textbox(label='UniProt ID/Accession',
visible=False, interactive=True)
target_upload_btn = gr.UploadButton(label='Upload a FASTA file',
type='binary',
visible=True, variant='primary',
size='lg', elem_classes="upload_button")
target_query_btn = gr.Button(value='Query the sequence', variant='primary',
elem_classes='upload_button', visible=False)
with gr.Column(scale=1):
with gr.Row():
with gr.Group():
drug_screen_target_family = gr.Dropdown(
choices=list(TARGET_FAMILY_MAP.keys()),
value='General',
label='Target family', interactive=True)
# with gr.Column(scale=1, min_width=24):
auto_detect_btn = gr.Button(value='Auto-detect', variant='primary')
HelpTip(
"Target amino acid sequence in the FASTA format. Alternatively, you may use a "
"UniProt ID/accession to query UniProt database for the sequence of your target"
"of interest. You can also search on databases like UniProt, RCSB PDB, "
"NCBI Protein for the FASTA string representing your target of interest. If "
"the input FASTA contains multiple entities, only the first one will be used."
)
with gr.Column(variant='panel'):
with gr.Group():
drug_library = gr.Radio(label='Drug library',
choices=list(DRUG_LIBRARY_MAP.keys()) + ['Upload a drug library'])
drug_library_upload = gr.File(label='Custom drug library file', visible=True)
with gr.Row(variant='panel'):
drug_screen_task = gr.Radio(list(TASK_MAP.keys()), label='Task',
value='Drug-target interaction')
with gr.Column(scale=2):
with gr.Group():
drug_screen_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Model')
recommend_btn = gr.Button(value='Recommend a model', variant='primary')
HelpTip("We recommend the appropriate model for your use case based on model performance "
"in drug-target interaction or binding affinity prediction "
"benchmarked on different target families and real-world data scenarios.")
# drug_screen_email = gr.Textbox(
# label='Email (optional)',
# info="Your email will be used to send you notifications when your job finishes."
# )
with gr.Row(visible=True):
drug_screen_clr_btn = gr.ClearButton()
drug_screen_btn = gr.Button(value='SCREEN', variant='primary')
# TODO Modify the pd df directly with df['X2'] = target
screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
screen_waiting = gr.Markdown("""
<center>Your job is running... It might take a few minutes.
When it's done, you will be redirected to the report page.
Meanwhile, please leave the page on.</center>
""", visible=False)
with gr.TabItem(label='Target protein identification', id=1):
gr.Markdown('''
# <center>DeepSEQreen Target Protein Identification</center>
<center>
To predict interactions/binding affinities of a single drug against a library of targets.
</center>
''')
with gr.Blocks() as identify_block:
with gr.Column() as identify_page:
with gr.Row():
with gr.Group():
drug_type = gr.Dropdown(label='Drug input type',
choices=['SMILES', 'SDF'],
value='SMILES',
scale=1,
interactive=True)
drug_upload = gr.UploadButton(label='⤒ Upload a file')
drug_smiles = gr.Code(label='Drug canonical SMILES', interactive=True, scale=5, lines=5)
with gr.Column(scale=1):
HelpTip(
"""Drug molecule in the SMILES format. You may search on databases like
NCBI PubChem, ChEMBL, and DrugBank for the SMILES strings
representing your drugs of interest.
"""
)
example_drug = gr.Button(value='Example: Aspirin', elem_id='example')
with gr.Column(variant='panel'):
with gr.Group():
target_library = gr.Radio(label='Target library',
choices=list(TARGET_LIBRARY_MAP.keys()) + ['Upload a target library'])
target_library_upload = gr.File(label='Custom target library file', visible=True)
with gr.Row(visible=True):
target_identify_task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
HelpTip("Choose a preset model for making the predictions.")
target_identify_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
HelpTip("Choose the protein family of your target.")
target_identify_target_family = gr.Dropdown(choices=['General'],
value='General',
label='Target family')
# with gr.Row():
# target_identify_email = gr.Textbox(
# label='Email (optional)',
# info="Your email will be used to send you notifications when your job finishes."
# )
with gr.Row(visible=True):
target_identify_clr_btn = gr.ClearButton()
target_identify_btn = gr.Button(value='IDENTIFY', variant='primary')
identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
identify_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
f"When it's done, you will be redirected to the report page. "
f"Meanwhile, please leave the page on.",
visible=False)
with gr.TabItem(label='Interaction pair inference', id=2):
gr.Markdown('''
# <center>DeepSEQreen Interaction Pair Inference</center>
<center>
To predict interactions/binding affinities between any drug-target pairs.
</center>
''')
with gr.Blocks() as infer_block:
with gr.Column() as infer_page:
HelpTip("Upload a custom drug-target pair dataset. See the documentation for details.")
infer_data_for_predict = gr.File(
label='Prediction dataset file', file_count="single", type='filepath')
# TODO example dataset
# TODO download example dataset
with gr.Row(visible=True):
pair_infer_task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
HelpTip("Choose a preset model for making the predictions.")
pair_infer_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
HelpTip("Choose the protein family of your target.")
pair_infer_target_family = gr.Dropdown(choices=['General'],
label='Target family',
value='General')
# with gr.Row():
# pair_infer_email = gr.Textbox(
# label='Email (optional)',
# info="Your email will be used to send you notifications when your job finishes."
# )
with gr.Row(visible=True):
pair_infer_clr_btn = gr.ClearButton()
pair_infer_btn = gr.Button(value='INFER', variant='primary')
infer_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
f"When it's done, you will be redirected to the report page. "
f"Meanwhile, please leave the page on.",
visible=False)
with gr.TabItem(label='Chemical property report', id=3):
with gr.Blocks() as report:
gr.Markdown('''
# <center>DeepSEQreen Chemical Property Report</center>
<center>
To compute chemical properties for the predictions of drug hit screening,
target protein identification, and interaction pair inference. You may also upload
your own dataset.
</center>
''')
with gr.Row():
file_for_report = gr.File(interactive=True, type='filepath')
# df_original = gr.Dataframe(type="pandas", interactive=False, visible=False)
scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Scores')
filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Filters')
with gr.Row():
clear_btn = gr.ClearButton()
analyze_btn = gr.Button('REPORT', variant='primary')
with gr.Row():
with gr.Column(scale=3):
html_report = gr.HTML() # label='Results', visible=True)
ranking_pie_chart = gr.Plot(visible=False)
with gr.Row():
csv_download_btn = gr.Button('Download report (HTML)', variant='primary')
html_download_btn = gr.Button('Download raw data (CSV)', variant='primary')
def target_input_type_select(input_type):
match input_type:
case 'UniProt ID':
return [gr.UploadButton(visible=False),
gr.Textbox(visible=True, label='UniProt ID/accession', info=None, value=''),
gr.Button(visible=True)]
case 'Gene symbol':
return [gr.UploadButton(visible=False),
gr.Textbox(visible=True, label='Gene symbol/name', info='Organism: human', value=''),
gr.Button(visible=True)]
case 'Sequence':
return [gr.UploadButton(visible=True),
gr.Textbox(visible=False), gr.Button(visible=False)]
target_input_type.select(fn=target_input_type_select,
inputs=target_input_type, outputs=[target_upload_btn, target_query, target_query_btn],
show_progress=False)
def uniprot_query(query, input_type):
fasta_seq = ''
query = query.strip()
match input_type:
case 'UniProt ID':
query = f"{query.strip()}.fasta"
case 'Gene symbol':
query = f'search?query=organism_id:9606+AND+gene:{query}&format=fasta'
try:
fasta = SESSION.get(UNIPROT_ENDPOINT.format(query=query))
fasta.raise_for_status()
fasta_seq = fasta.text
except Exception as e:
raise gr.Warning(f"Failed to query FASTA from UniProt due to {str(e)}")
finally:
return fasta_seq
target_upload_btn.upload(fn=lambda x: x.decode(), inputs=target_upload_btn, outputs=target_fasta)
target_query_btn.click(uniprot_query, inputs=[target_query, target_input_type], outputs=target_fasta)
target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
drug_smiles.focus(fn=wrap_text, inputs=drug_smiles, outputs=drug_smiles, show_progress=False)
drug_smiles.blur(fn=wrap_text, inputs=drug_smiles, outputs=drug_smiles, show_progress=False)
def example_fill(input_type):
match input_type:
case 'UniProt ID':
query = 'Q16539'
case 'Gene symbol':
query = 'MAPK14'
case _:
query = ''
return {target_query: query,
target_fasta: """
>sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3
MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ
SIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQ
KLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMT
GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVG
TPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA
QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
"""}
example_target.click(fn=example_fill, inputs=target_input_type,
outputs=[target_query, target_fasta], show_progress=False)
example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=drug_smiles, show_progress=False)
def drug_screen_validate(fasta, library, library_upload, state):
if not state:
def process_target_fasta(sequence):
lines = sequence.strip().split("\n")
if lines[0].startswith(">"):
lines = lines[1:]
return ''.join(lines).split(">")[0]
fasta = process_target_fasta(fasta)
err = validate_seq_str(fasta, FASTA_PAT)
if err:
raise gr.Error(f'Found error(s) in your target fasta input: {err}')
if library in DRUG_LIBRARY_MAP.keys():
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library]))
else:
screen_df = pd.read_csv(library_upload)
validate_columns(screen_df, ['X1'])
screen_df['X2'] = fasta
job_id = uuid4()
temp_file = Path(f'{job_id}_temp.csv').resolve()
screen_df.to_csv(temp_file)
if temp_file.is_file():
return {screen_data_for_predict: str(temp_file),
screen_flag: job_id,
run_state: job_id}
else:
gr.Warning('You have another prediction job '
'(drug hit screening, target protein identification, or interation pair inference) '
'running in the session right now. '
'Please submit another job when your current job has finished.')
return {screen_flag: False}
def target_identify_validate(smiles, library, library_upload, state):
if not state:
err = validate_seq_str(smiles, SMILES_PAT)
if err:
raise gr.Error(f'Found error(s) in your compound SMILES input: {err}')
if library in TARGET_LIBRARY_MAP.keys():
identify_df = pd.read_csv(TARGET_LIBRARY_MAP['target_library'])
else:
identify_df = pd.read_csv(library_upload)
validate_columns(identify_df, ['X2'])
identify_df['X1'] = smiles
job_id = uuid4()
temp_file = Path(f'{job_id}_temp.csv').resolve()
identify_df.to_csv(temp_file)
if temp_file.is_file():
return {identify_data_for_predict: str(temp_file),
identify_flag: gr.State(job_id),
run_state: gr.State(job_id)}
else:
gr.Warning('You have another prediction job '
'(drug hit screening, target protein identification, or interation pair inference) '
'running in the session right now. '
'Please submit another job when your current job has finished.')
return {identify_flag: False}
def pair_infer_validate(drug_target_pair_upload, run_state):
if not run_state:
df = pd.read_csv(drug_target_pair_upload)
validate_columns(df, ['X1', 'X2'])
df['X1_ERR'] = df['X1'].swifter.apply(
validate_seq_str, regex=SMILES_PAT)
df['X2_ERR'] = df['X2'].swifter.apply(
validate_seq_str, regex=FASTA_PAT)
if not df['X1_ERR'].isna().all():
raise gr.Error(f"Encountered invalid SMILES:\n{df[~df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
if not df['X2_ERR'].isna().all():
raise gr.Error(f"Encountered invalid FASTA:\n{df[~df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
job_id = uuid4()
return {infer_flag: gr.State(job_id),
run_state: gr.State(job_id)}
else:
gr.Warning('You have another prediction job '
'(drug hit screening, target protein identification, or interation pair inference) '
'running in the session right now. '
'Please submit another job when your current job has finished.')
return {infer_flag: False}
drug_screen_btn.click(
fn=drug_screen_validate,
inputs=[target_fasta, drug_library, drug_library_upload, run_state], # , drug_screen_email],
outputs=[screen_data_for_predict, screen_flag, run_state]
).then(
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
outputs=[screen_page, screen_waiting]
).then(
fn=submit_predict,
inputs=[screen_data_for_predict, drug_screen_task, drug_screen_preset,
drug_screen_target_family, screen_flag], # , drug_screen_email],
outputs=[file_for_report, run_state]
).then(
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
outputs=[screen_page, screen_waiting]
)
target_identify_btn.click(
fn=target_identify_validate,
inputs=[drug_smiles, target_library, target_library_upload, run_state], # , drug_screen_email],
outputs=[identify_data_for_predict, identify_flag, run_state]
).then(
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
outputs=[identify_page, identify_waiting]
).then(
fn=submit_predict,
inputs=[identify_data_for_predict, target_identify_task, target_identify_preset,
target_identify_target_family, identify_flag], # , target_identify_email],
outputs=[file_for_report, run_state]
).then(
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
outputs=[identify_page, identify_waiting]
)
pair_infer_btn.click(
fn=pair_infer_validate,
inputs=[infer_data_for_predict, run_state], # , drug_screen_email],
outputs=[infer_flag, run_state]
).then(
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
outputs=[infer_page, infer_waiting]
).then(
fn=submit_predict,
inputs=[infer_data_for_predict, pair_infer_task, pair_infer_preset,
pair_infer_target_family, infer_flag], # , pair_infer_email],
outputs=[file_for_report, run_state]
).then(
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
outputs=[infer_page, infer_waiting]
)
# TODO background job from these 3 pipelines to update file_for_report
file_for_report.change(fn=update_df, inputs=file_for_report, outputs=[html_report, ranking_pie_chart])
analyze_btn.click(fn=submit_report, inputs=[scores, filters], outputs=[html_report, ranking_pie_chart])
# screen_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
# every=5)
# identify_waiting.change(fn=check_job_status, inputs=run_state, outputs=[identify_waiting, tabs, file_for_report],
# every=5)
# pair_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
# every=5)
# demo.load(None, None, None, js="() => {document.body.classList.remove('dark')}")
if __name__ == "__main__":
screen_block.queue(max_size=2)
identify_block.queue(max_size=2)
infer_block.queue(max_size=2)
report.queue(max_size=20)
# SCHEDULER.add_job(func=file_cleanup(), trigger="interval", seconds=60)
# SCHEDULER.start()
demo.launch(
# debug=True,
show_api=False,
# favicon_path=,
# inline=False
debug=True
)
|