Spaces:
Sleeping
Sleeping
File size: 14,914 Bytes
953417b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
import math
from collections import defaultdict
from typing import Literal
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from rdkit import Chem
from scipy.sparse import coo_matrix
from torch_geometric.data import Data
from torch_geometric.nn.pool.topk_pool import TopKPooling
from torch_geometric.nn.glob import global_mean_pool as gap, global_max_pool as gmp
from torch_geometric.utils import add_self_loops, remove_self_loops
from torch_geometric.nn.conv.message_passing import MessagePassing
class CoaDTIPro(nn.Module):
def __init__(self,
esm_model_and_alphabet, n_fingerprint, dim, n_word, layer_output, layer_coa, nhead=8, dropout=0.1,
co_attention: Literal['stack', 'encoder', 'inter'] = 'inter', gcn_pooling=False, ):
super().__init__()
self.co_attention = co_attention
self.layer_output = layer_output
self.layer_coa = layer_coa
self.embed_word = nn.Embedding(n_word, dim)
self.gnn = GNN(n_fingerprint, gcn_pooling)
self.esm_model, self.alphabet = esm_model_and_alphabet
self.batch_converter = self.alphabet.get_batch_converter()
self.W_attention = nn.Linear(dim, dim)
self.W_out = nn.Sequential(
nn.Linear(2 * dim, dim),
nn.Linear(dim, 128),
nn.Linear(128, 64)
)
self.coa_layers = CoAttention(dim, nhead, dropout, layer_coa, co_attention)
self.lin = nn.Linear(768, 512) # bert1024 esm768
self.W_interaction = nn.Linear(64, 2)
def attention_cnn(self, x, xs, layer):
"""The attention mechanism is applied to the last layer of CNN."""
xs = torch.unsqueeze(torch.unsqueeze(xs, 0), 0)
for i in range(layer):
xs = torch.relu(self.W_cnn[i](xs))
xs = torch.squeeze(torch.squeeze(xs, 0), 0)
h = torch.relu(self.W_attention(x))
hs = torch.relu(self.W_attention(xs))
weights = torch.tanh(F.linear(h, hs))
ys = torch.t(weights) * hs
return torch.unsqueeze(torch.mean(ys, 0), 0)
def forward(self, inputs, proteins):
"""Compound vector with GNN."""
compound_vector = self.gnn(inputs)
compound_vector = torch.unsqueeze(compound_vector, 0) # sequence-like GNN ouput
_, _, proteins = self.batch_converter([(None, protein) for protein in proteins])
with torch.no_grad():
results = self.esm_model(proteins.to(compound_vector.device), repr_layers=[6])
token_representations = results["representations"][6]
protein_vector = token_representations[:, 1:, :]
protein_vector = self.lin(torch.squeeze(protein_vector, 1))
protein_vector, compound_vector = self.coa_layers(protein_vector, compound_vector)
protein_vector = protein_vector.mean(dim=1)
compound_vector = compound_vector.mean(dim=1)
"""Concatenate the above two vectors and output the interaction."""
cat_vector = torch.cat((compound_vector, protein_vector), 1)
cat_vector = torch.tanh(self.W_out(cat_vector))
interaction = self.W_interaction(cat_vector)
return interaction
class CoAttention(nn.Module):
def __init__(self, dim, nhead, dropout, layer_coa, co_attention):
super().__init__()
self.co_attention = co_attention
if self.co_attention == 'encoder':
self.coa_layers = EncoderCrossAtt(dim, nhead, dropout, layer_coa)
elif self.co_attention == 'stack':
self.coa_layers = nn.ModuleList([StackCrossAtt(dim, nhead, dropout) for _ in range(layer_coa)])
elif self.co_attention == 'inter':
self.coa_layers = nn.ModuleList([InterCrossAtt(dim, nhead, dropout) for _ in range(layer_coa)])
def forward(self, protein_vector, compound_vector):
# x and y are the input tensors for the two modalities
# edge_index_x and edge_index_y are the edge indices for the graph data
if self.co_attention == 'encoder':
return self.coa_layers(protein_vector, compound_vector)
else:
# loop over the sequential layers and pass the arguments
for layer in self.coa_layers:
protein_vector, compound_vector = layer(protein_vector, compound_vector)
return protein_vector, compound_vector
class EncoderCrossAtt(nn.Module):
def __init__(self, dim, nhead, dropout, layers):
super().__init__()
# self.encoder_layers = nn.ModuleList([SEA(dim, dropout) for _ in range(layers)])
self.encoder_layers = nn.ModuleList([SA(dim, nhead, dropout) for _ in range(layers)])
self.decoder_sa = nn.ModuleList([SA(dim, nhead, dropout) for _ in range(layers)])
self.decoder_coa = nn.ModuleList([DPA(dim, nhead, dropout) for _ in range(layers)])
self.layer_coa = layers
def forward(self, protein_vector, compound_vector):
for i in range(self.layer_coa):
compound_vector = self.encoder_layers[i](compound_vector, None) # self-attention
for i in range(self.layer_coa):
protein_vector = self.decoder_sa[i](protein_vector, None)
protein_vector = self.decoder_coa[i](protein_vector, compound_vector, None)# co-attention
return protein_vector, compound_vector
class InterCrossAtt(nn.Module):
def __init__(self, dim, nhead, dropout):
super().__init__()
self.sca = SA(dim, nhead, dropout)
self.spa = SA(dim, nhead, dropout)
self.coa_pc = DPA(dim, nhead, dropout)
self.coa_cp = DPA(dim, nhead, dropout)
def forward(self, protein_vector, compound_vector):
compound_vector = self.sca(compound_vector, None) # self-attention
protein_vector = self.spa(protein_vector, None) # self-attention
compound_covector = self.coa_pc(compound_vector, protein_vector, None) # co-attention
protein_covector = self.coa_cp(protein_vector, compound_vector, None) # co-attention
return protein_covector, compound_covector
class StackCrossAtt(nn.Module):
def __init__(self, dim, nhead, dropout):
super().__init__()
self.sca = SA(dim, nhead, dropout)
self.spa = SA(dim, nhead, dropout)
self.coa_cp = DPA(dim, nhead, dropout)
def forward(self, protein_vector, compound_vector):
compound_vector = self.sca(compound_vector, None) # self-attention
protein_vector = self.spa(protein_vector, None) # self-attention
protein_covector = self.coa_cp(protein_vector, compound_vector, None) # co-attention
return protein_covector, compound_vector
class MHAtt(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.linear_v = nn.Linear(hid_dim, hid_dim)
self.linear_k = nn.Linear(hid_dim, hid_dim)
self.linear_q = nn.Linear(hid_dim, hid_dim)
self.linear_merge = nn.Linear(hid_dim, hid_dim)
self.hid_dim = hid_dim
self.dropout = dropout
self.nhead = n_heads
self.dropout = nn.Dropout(dropout)
self.hidden_size_head = int(self.hid_dim / self.nhead)
def forward(self, v, k, q, mask):
n_batches = q.size(0)
v = self.linear_v(v).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)
k = self.linear_k(k).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)
q = self.linear_q(q).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)
atted = self.att(v, k, q, mask)
atted = atted.transpose(1, 2).contiguous().view(n_batches, -1, self.hid_dim)
atted = self.linear_merge(atted)
return atted
def att(self, value, key, query, mask):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask, -1e9)
att_map = F.softmax(scores, dim=-1)
att_map = self.dropout(att_map)
return torch.matmul(att_map, value)
class DPA(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.mhatt1 = MHAtt(hid_dim, n_heads, dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(hid_dim)
def forward(self, x, y, y_mask=None):
x = self.norm1(x + self.dropout1(self.mhatt1(y, y, x, y_mask)))
return x
class SA(nn.Module):
def __init__(self, hid_dim, n_heads, dropout):
super().__init__()
self.mhatt1 = MHAtt(hid_dim, n_heads, dropout)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(hid_dim)
def forward(self, x, mask=None):
x = self.norm1(x + self.dropout1(self.mhatt1(x, x, x, mask)))
return x
class SAGEConv(MessagePassing):
def __init__(self, in_channels, out_channels):
super().__init__(aggr='max') # "Max" aggregation.
self.lin = torch.nn.Linear(in_channels, out_channels)
self.act = torch.nn.ReLU()
self.update_lin = torch.nn.Linear(in_channels + out_channels, in_channels, bias=False)
self.update_act = torch.nn.ReLU()
def forward(self, x, edge_index):
# x has shape [N, in_channels]
# edge_index has shape [2, E]
edge_index, _ = remove_self_loops(edge_index)
edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))
return self.propagate(edge_index, size=(x.size(0), x.size(0)), x=x)
def message(self, x_j):
# x_j has shape [E, in_channels]
x_j = self.lin(x_j)
x_j = self.act(x_j)
return x_j
def update(self, aggr_out, x):
# aggr_out has shape [N, out_channels]
new_embedding = torch.cat([aggr_out, x], dim=1)
new_embedding = self.update_lin(new_embedding)
new_embedding = self.update_act(new_embedding)
return new_embedding
class GNN(nn.Module):
def __init__(self, n_fingerprint, pooling, embed_dim=128):
super().__init__()
self.pooling = pooling
self.embed_fingerprint = nn.Embedding(num_embeddings=n_fingerprint, embedding_dim=embed_dim)
self.conv1 = SAGEConv(embed_dim, 128)
self.pool1 = TopKPooling(128, ratio=0.8)
self.conv2 = SAGEConv(128, 128)
self.pool2 = TopKPooling(128, ratio=0.8)
self.conv3 = SAGEConv(128, 128)
self.pool3 = TopKPooling(128, ratio=0.8)
self.linp1 = torch.nn.Linear(256, 128)
self.linp2 = torch.nn.Linear(128, 512)
self.lin = torch.nn.Linear(128, 512)
self.bn1 = torch.nn.BatchNorm1d(128)
self.bn2 = torch.nn.BatchNorm1d(64)
self.act1 = torch.nn.ReLU()
self.act2 = torch.nn.ReLU()
def forward(self, data):
# x, edge_index, batch = data.x, data.edge_index, data.batch
x, edge_index, batch = data.x, data.edge_index, data.batch
x = self.embed_fingerprint(x)
x = x.squeeze(1)
x = F.relu(self.conv1(x, edge_index))
if self.pooling:
x, edge_index, _, batch, _, _ = self.pool1(x, edge_index, None, batch)
x1 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x = F.relu(self.conv2(x, edge_index))
x, edge_index, _, batch, _, _ = self.pool2(x, edge_index, None, batch)
x2 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x, edge_index, _, batch, _, _ = self.pool3(x, edge_index, None, batch)
x3 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)
x = x1 + x2 + x3
x = self.linp1(x)
x = self.act1(x)
x = self.linp2(x)
else:
x = F.relu(self.conv2(x, edge_index))
x = self.lin(x)
return x
atom_dict = defaultdict(lambda: len(atom_dict)) # 51 bindingdb: 26
bond_dict = defaultdict(lambda: len(bond_dict)) # 4 bindingdb: 4
fingerprint_dict = defaultdict(lambda: len(fingerprint_dict)) # 6341 bindingdb: 20366
edge_dict = defaultdict(lambda: len(edge_dict)) # 17536 bindingdb: 77916
word_dict = defaultdict(lambda: len(word_dict)) # 22 bindingdb: 21
def drug_featurizer(smiles, radius=2):
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
atoms = create_atoms(mol)
i_jbond_dict = create_ijbonddict(mol)
fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
adjacency = coo_matrix(Chem.GetAdjacencyMatrix(mol))
adjacency = coo_matrix(adjacency)
edge_index = np.array([adjacency.row, adjacency.col])
return Data(x=torch.LongTensor(fingerprints).unsqueeze(1), edge_index=torch.LongTensor(edge_index))
def create_atoms(mol):
"""Create a list of atom (e.g., hydrogen and oxygen) IDs
considering the aromaticity."""
# GetSymbol: obtain the symbol of the atom
atoms = [a.GetSymbol() for a in mol.GetAtoms()]
for a in mol.GetAromaticAtoms():
i = a.GetIdx()
atoms[i] = (atoms[i], 'aromatic')
# turn it into index
atoms = [atom_dict[a] for a in atoms]
return np.array(atoms)
def create_ijbonddict(mol):
"""Create a dictionary, which each key is a node ID
and each value is the tuples of its neighboring node
and bond (e.g., single and double) IDs."""
i_jbond_dict = defaultdict(lambda: [])
for b in mol.GetBonds():
i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
bond = bond_dict[str(b.GetBondType())]
i_jbond_dict[i].append((j, bond))
i_jbond_dict[j].append((i, bond))
return i_jbond_dict
def extract_fingerprints(atoms, i_jbond_dict, radius=2):
"""Extract the r-radius subgraphs (i.e., fingerprints)
from a molecular graph using Weisfeiler-Lehman algorithm."""
fingerprints = None
if (len(atoms) == 1) or (radius == 0):
fingerprints = [fingerprint_dict[a] for a in atoms]
else:
nodes = atoms
i_jedge_dict = i_jbond_dict
for _ in range(radius):
"""Update each node ID considering its neighboring nodes and edges
(i.e., r-radius subgraphs or fingerprints)."""
fingerprints = []
for i, j_edge in i_jedge_dict.items():
neighbors = [(nodes[j], edge) for j, edge in j_edge]
fingerprint = (nodes[i], tuple(sorted(neighbors)))
fingerprints.append(fingerprint_dict[fingerprint])
nodes = fingerprints
"""Also update each edge ID considering two nodes
on its both sides."""
_i_jedge_dict = defaultdict(lambda: [])
for i, j_edge in i_jedge_dict.items():
for j, edge in j_edge:
both_side = tuple(sorted((nodes[i], nodes[j])))
edge = edge_dict[(both_side, edge)]
_i_jedge_dict[i].append((j, edge))
i_jedge_dict = _i_jedge_dict
return np.array(fingerprints)
|