File size: 14,914 Bytes
953417b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import math
from collections import defaultdict
from typing import Literal

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from rdkit import Chem
from scipy.sparse import coo_matrix
from torch_geometric.data import Data
from torch_geometric.nn.pool.topk_pool import TopKPooling
from torch_geometric.nn.glob import global_mean_pool as gap, global_max_pool as gmp
from torch_geometric.utils import add_self_loops, remove_self_loops
from torch_geometric.nn.conv.message_passing import MessagePassing


class CoaDTIPro(nn.Module):
    def __init__(self,
                 esm_model_and_alphabet, n_fingerprint, dim, n_word, layer_output, layer_coa, nhead=8, dropout=0.1,
                 co_attention: Literal['stack', 'encoder', 'inter'] = 'inter', gcn_pooling=False, ):
        super().__init__()
        self.co_attention = co_attention
        self.layer_output = layer_output
        self.layer_coa = layer_coa
        self.embed_word = nn.Embedding(n_word, dim)
        self.gnn = GNN(n_fingerprint, gcn_pooling)
        self.esm_model, self.alphabet = esm_model_and_alphabet
        self.batch_converter = self.alphabet.get_batch_converter()

        self.W_attention = nn.Linear(dim, dim)

        self.W_out = nn.Sequential(
            nn.Linear(2 * dim, dim),
            nn.Linear(dim, 128),
            nn.Linear(128, 64)
        )

        self.coa_layers = CoAttention(dim, nhead, dropout, layer_coa, co_attention)
        self.lin = nn.Linear(768, 512)  # bert1024 esm768
        self.W_interaction = nn.Linear(64, 2)

    def attention_cnn(self, x, xs, layer):
        """The attention mechanism is applied to the last layer of CNN."""
        xs = torch.unsqueeze(torch.unsqueeze(xs, 0), 0)
        for i in range(layer):
            xs = torch.relu(self.W_cnn[i](xs))
        xs = torch.squeeze(torch.squeeze(xs, 0), 0)

        h = torch.relu(self.W_attention(x))
        hs = torch.relu(self.W_attention(xs))
        weights = torch.tanh(F.linear(h, hs))
        ys = torch.t(weights) * hs

        return torch.unsqueeze(torch.mean(ys, 0), 0)

    def forward(self, inputs, proteins):
        """Compound vector with GNN."""
        compound_vector = self.gnn(inputs)
        compound_vector = torch.unsqueeze(compound_vector, 0)  # sequence-like GNN ouput

        _, _, proteins = self.batch_converter([(None, protein) for protein in proteins])
        with torch.no_grad():
            results = self.esm_model(proteins.to(compound_vector.device), repr_layers=[6])
        token_representations = results["representations"][6]

        protein_vector = token_representations[:, 1:, :]
        protein_vector = self.lin(torch.squeeze(protein_vector, 1))

        protein_vector, compound_vector = self.coa_layers(protein_vector, compound_vector)

        protein_vector = protein_vector.mean(dim=1)
        compound_vector = compound_vector.mean(dim=1)
        """Concatenate the above two vectors and output the interaction."""
        cat_vector = torch.cat((compound_vector, protein_vector), 1)
        cat_vector = torch.tanh(self.W_out(cat_vector))
        interaction = self.W_interaction(cat_vector)
        return interaction


class CoAttention(nn.Module):
    def __init__(self, dim, nhead, dropout, layer_coa, co_attention):
        super().__init__()
        self.co_attention = co_attention
        if self.co_attention == 'encoder':
            self.coa_layers = EncoderCrossAtt(dim, nhead, dropout, layer_coa)
        elif self.co_attention == 'stack':
            self.coa_layers = nn.ModuleList([StackCrossAtt(dim, nhead, dropout) for _ in range(layer_coa)])
        elif self.co_attention == 'inter':
            self.coa_layers = nn.ModuleList([InterCrossAtt(dim, nhead, dropout) for _ in range(layer_coa)])

    def forward(self, protein_vector, compound_vector):
        # x and y are the input tensors for the two modalities
        # edge_index_x and edge_index_y are the edge indices for the graph data
        if self.co_attention == 'encoder':
            return self.coa_layers(protein_vector, compound_vector)
        else:
            # loop over the sequential layers and pass the arguments
            for layer in self.coa_layers:
                protein_vector, compound_vector = layer(protein_vector, compound_vector)
            return protein_vector, compound_vector


class EncoderCrossAtt(nn.Module):
    def __init__(self, dim, nhead, dropout, layers):
        super().__init__()
        # self.encoder_layers = nn.ModuleList([SEA(dim, dropout) for _ in range(layers)])
        self.encoder_layers = nn.ModuleList([SA(dim, nhead, dropout) for _ in range(layers)])
        self.decoder_sa = nn.ModuleList([SA(dim, nhead, dropout) for _ in range(layers)])
        self.decoder_coa = nn.ModuleList([DPA(dim, nhead, dropout) for _ in range(layers)])
        self.layer_coa = layers

    def forward(self, protein_vector, compound_vector):
        for i in range(self.layer_coa):
            compound_vector = self.encoder_layers[i](compound_vector, None)  # self-attention
        for i in range(self.layer_coa):
            protein_vector = self.decoder_sa[i](protein_vector, None)
            protein_vector = self.decoder_coa[i](protein_vector, compound_vector, None)# co-attention

        return protein_vector, compound_vector


class InterCrossAtt(nn.Module):
    def __init__(self, dim, nhead, dropout):
        super().__init__()
        self.sca = SA(dim, nhead, dropout)
        self.spa = SA(dim, nhead, dropout)
        self.coa_pc = DPA(dim, nhead, dropout)
        self.coa_cp = DPA(dim, nhead, dropout)

    def forward(self, protein_vector, compound_vector):
        compound_vector = self.sca(compound_vector, None)  # self-attention
        protein_vector = self.spa(protein_vector, None)  # self-attention
        compound_covector = self.coa_pc(compound_vector, protein_vector, None)  # co-attention
        protein_covector = self.coa_cp(protein_vector, compound_vector, None)  # co-attention

        return protein_covector, compound_covector


class StackCrossAtt(nn.Module):
    def __init__(self, dim, nhead, dropout):
        super().__init__()
        self.sca = SA(dim, nhead, dropout)
        self.spa = SA(dim, nhead, dropout)
        self.coa_cp = DPA(dim, nhead, dropout)

    def forward(self, protein_vector, compound_vector):
        compound_vector = self.sca(compound_vector, None)  # self-attention
        protein_vector = self.spa(protein_vector, None)  # self-attention
        protein_covector = self.coa_cp(protein_vector, compound_vector, None)  # co-attention

        return protein_covector, compound_vector


class MHAtt(nn.Module):
    def __init__(self, hid_dim, n_heads, dropout):
        super().__init__()

        self.linear_v = nn.Linear(hid_dim, hid_dim)
        self.linear_k = nn.Linear(hid_dim, hid_dim)
        self.linear_q = nn.Linear(hid_dim, hid_dim)
        self.linear_merge = nn.Linear(hid_dim, hid_dim)
        self.hid_dim = hid_dim
        self.dropout = dropout
        self.nhead = n_heads

        self.dropout = nn.Dropout(dropout)
        self.hidden_size_head = int(self.hid_dim / self.nhead)

    def forward(self, v, k, q, mask):
        n_batches = q.size(0)
        v = self.linear_v(v).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)
        k = self.linear_k(k).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)
        q = self.linear_q(q).view(n_batches, -1, self.nhead, self.hidden_size_head).transpose(1, 2)

        atted = self.att(v, k, q, mask)
        atted = atted.transpose(1, 2).contiguous().view(n_batches, -1, self.hid_dim)

        atted = self.linear_merge(atted)

        return atted

    def att(self, value, key, query, mask):
        d_k = query.size(-1)

        scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)

        if mask is not None:
            scores = scores.masked_fill(mask, -1e9)

        att_map = F.softmax(scores, dim=-1)
        att_map = self.dropout(att_map)

        return torch.matmul(att_map, value)


class DPA(nn.Module):
    def __init__(self, hid_dim, n_heads, dropout):
        super().__init__()

        self.mhatt1 = MHAtt(hid_dim, n_heads, dropout)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(hid_dim)

    def forward(self, x, y, y_mask=None):
        x = self.norm1(x + self.dropout1(self.mhatt1(y, y, x, y_mask)))
        return x


class SA(nn.Module):
    def __init__(self, hid_dim, n_heads, dropout):
        super().__init__()

        self.mhatt1 = MHAtt(hid_dim, n_heads, dropout)
        self.dropout1 = nn.Dropout(dropout)
        self.norm1 = nn.LayerNorm(hid_dim)

    def forward(self, x, mask=None):
        x = self.norm1(x + self.dropout1(self.mhatt1(x, x, x, mask)))
        return x


class SAGEConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super().__init__(aggr='max')  # "Max" aggregation.
        self.lin = torch.nn.Linear(in_channels, out_channels)
        self.act = torch.nn.ReLU()
        self.update_lin = torch.nn.Linear(in_channels + out_channels, in_channels, bias=False)
        self.update_act = torch.nn.ReLU()

    def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]
        edge_index, _ = remove_self_loops(edge_index)
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))

        return self.propagate(edge_index, size=(x.size(0), x.size(0)), x=x)

    def message(self, x_j):
        # x_j has shape [E, in_channels]
        x_j = self.lin(x_j)
        x_j = self.act(x_j)

        return x_j

    def update(self, aggr_out, x):
        # aggr_out has shape [N, out_channels]
        new_embedding = torch.cat([aggr_out, x], dim=1)

        new_embedding = self.update_lin(new_embedding)
        new_embedding = self.update_act(new_embedding)

        return new_embedding


class GNN(nn.Module):
    def __init__(self, n_fingerprint, pooling, embed_dim=128):
        super().__init__()
        self.pooling = pooling
        self.embed_fingerprint = nn.Embedding(num_embeddings=n_fingerprint, embedding_dim=embed_dim)
        self.conv1 = SAGEConv(embed_dim, 128)
        self.pool1 = TopKPooling(128, ratio=0.8)
        self.conv2 = SAGEConv(128, 128)
        self.pool2 = TopKPooling(128, ratio=0.8)
        self.conv3 = SAGEConv(128, 128)
        self.pool3 = TopKPooling(128, ratio=0.8)
        self.linp1 = torch.nn.Linear(256, 128)
        self.linp2 = torch.nn.Linear(128, 512)

        self.lin = torch.nn.Linear(128, 512)
        self.bn1 = torch.nn.BatchNorm1d(128)
        self.bn2 = torch.nn.BatchNorm1d(64)
        self.act1 = torch.nn.ReLU()
        self.act2 = torch.nn.ReLU()

    def forward(self, data):
        # x, edge_index, batch = data.x, data.edge_index, data.batch
        x, edge_index, batch = data.x, data.edge_index, data.batch
        x = self.embed_fingerprint(x)
        x = x.squeeze(1)
        x = F.relu(self.conv1(x, edge_index))

        if self.pooling:
            x, edge_index, _, batch, _, _ = self.pool1(x, edge_index, None, batch)
            x1 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)

            x = F.relu(self.conv2(x, edge_index))

            x, edge_index, _, batch, _, _ = self.pool2(x, edge_index, None, batch)
            x2 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)

            x, edge_index, _, batch, _, _ = self.pool3(x, edge_index, None, batch)
            x3 = torch.cat([gmp(x, batch), gap(x, batch)], dim=1)

            x = x1 + x2 + x3
            x = self.linp1(x)
            x = self.act1(x)
            x = self.linp2(x)

        else:
            x = F.relu(self.conv2(x, edge_index))
            x = self.lin(x)

        return x


atom_dict = defaultdict(lambda: len(atom_dict))  # 51 bindingdb: 26
bond_dict = defaultdict(lambda: len(bond_dict))  # 4 bindingdb: 4
fingerprint_dict = defaultdict(lambda: len(fingerprint_dict))  # 6341 bindingdb: 20366
edge_dict = defaultdict(lambda: len(edge_dict))  # 17536 bindingdb: 77916
word_dict = defaultdict(lambda: len(word_dict))  # 22 bindingdb: 21


def drug_featurizer(smiles, radius=2):
    mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
    atoms = create_atoms(mol)
    i_jbond_dict = create_ijbonddict(mol)
    fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
    adjacency = coo_matrix(Chem.GetAdjacencyMatrix(mol))
    adjacency = coo_matrix(adjacency)
    edge_index = np.array([adjacency.row, adjacency.col])

    return Data(x=torch.LongTensor(fingerprints).unsqueeze(1), edge_index=torch.LongTensor(edge_index))


def create_atoms(mol):
    """Create a list of atom (e.g., hydrogen and oxygen) IDs
    considering the aromaticity."""
    # GetSymbol: obtain the symbol of the atom
    atoms = [a.GetSymbol() for a in mol.GetAtoms()]
    for a in mol.GetAromaticAtoms():
        i = a.GetIdx()
        atoms[i] = (atoms[i], 'aromatic')
    # turn it into index
    atoms = [atom_dict[a] for a in atoms]

    return np.array(atoms)


def create_ijbonddict(mol):
    """Create a dictionary, which each key is a node ID
    and each value is the tuples of its neighboring node
    and bond (e.g., single and double) IDs."""
    i_jbond_dict = defaultdict(lambda: [])
    for b in mol.GetBonds():
        i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
        bond = bond_dict[str(b.GetBondType())]
        i_jbond_dict[i].append((j, bond))
        i_jbond_dict[j].append((i, bond))
    return i_jbond_dict


def extract_fingerprints(atoms, i_jbond_dict, radius=2):
    """Extract the r-radius subgraphs (i.e., fingerprints)
    from a molecular graph using Weisfeiler-Lehman algorithm."""
    fingerprints = None

    if (len(atoms) == 1) or (radius == 0):
        fingerprints = [fingerprint_dict[a] for a in atoms]

    else:
        nodes = atoms
        i_jedge_dict = i_jbond_dict

        for _ in range(radius):

            """Update each node ID considering its neighboring nodes and edges
            (i.e., r-radius subgraphs or fingerprints)."""
            fingerprints = []
            for i, j_edge in i_jedge_dict.items():
                neighbors = [(nodes[j], edge) for j, edge in j_edge]
                fingerprint = (nodes[i], tuple(sorted(neighbors)))
                fingerprints.append(fingerprint_dict[fingerprint])
            nodes = fingerprints

            """Also update each edge ID considering two nodes
            on its both sides."""
            _i_jedge_dict = defaultdict(lambda: [])
            for i, j_edge in i_jedge_dict.items():
                for j, edge in j_edge:
                    both_side = tuple(sorted((nodes[i], nodes[j])))
                    edge = edge_dict[(both_side, edge)]
                    _i_jedge_dict[i].append((j, edge))
            i_jedge_dict = _i_jedge_dict

    return np.array(fingerprints)