File size: 15,523 Bytes
953417b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import torch
from torch import nn
import torch.nn.functional as F

# some predefined parameters
elem_list = ['C', 'N', 'O', 'S', 'F', 'Si', 'P', 'Cl', 'Br', 'Mg', 'Na', 'Ca', 'Fe', 'As', 'Al', 'I', 'B', 'V', 'K',
             'Tl', 'Yb', 'Sb', 'Sn', 'Ag', 'Pd', 'Co', 'Se', 'Ti', 'Zn', 'H', 'Li', 'Ge', 'Cu', 'Au', 'Ni', 'Cd', 'In',
             'Mn', 'Zr', 'Cr', 'Pt', 'Hg', 'Pb', 'W', 'Ru', 'Nb', 'Re', 'Te', 'Rh', 'Tc', 'Ba', 'Bi', 'Hf', 'Mo', 'U',
             'Sm', 'Os', 'Ir', 'Ce', 'Gd', 'Ga', 'Cs', 'unknown']
atom_fdim = len(elem_list) + 6 + 6 + 6 + 1
bond_fdim = 6
max_nb = 6


class MONN(nn.Module):
    # init_A, init_B, init_W = loading_emb(measure)
    # net = Net(init_A, init_B, init_W, params)
    def __init__(self, init_atom_features, init_bond_features, init_word_features, params):
        super().__init__()
        self.init_atom_features = init_atom_features
        self.init_bond_features = init_bond_features
        self.init_word_features = init_word_features

        """hyper part"""
        GNN_depth, inner_CNN_depth, DMA_depth, k_head, kernel_size, hidden_size1, hidden_size2 = params
        self.GNN_depth = GNN_depth
        self.inner_CNN_depth = inner_CNN_depth
        self.DMA_depth = DMA_depth
        self.k_head = k_head
        self.kernel_size = kernel_size
        self.hidden_size1 = hidden_size1
        self.hidden_size2 = hidden_size2

        """GraphConv Module"""
        self.vertex_embedding = nn.Linear(atom_fdim,
                                          self.hidden_size1)  # first transform vertex features into hidden representations

        # GWM parameters
        self.W_a_main = nn.ModuleList(
            [nn.ModuleList([nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.k_head)]) for i in
             range(self.GNN_depth)])
        self.W_a_super = nn.ModuleList(
            [nn.ModuleList([nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.k_head)]) for i in
             range(self.GNN_depth)])
        self.W_main = nn.ModuleList(
            [nn.ModuleList([nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.k_head)]) for i in
             range(self.GNN_depth)])
        self.W_bmm = nn.ModuleList(
            [nn.ModuleList([nn.Linear(self.hidden_size1, 1) for i in range(self.k_head)]) for i in
             range(self.GNN_depth)])

        self.W_super = nn.ModuleList([nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.GNN_depth)])
        self.W_main_to_super = nn.ModuleList(
            [nn.Linear(self.hidden_size1 * self.k_head, self.hidden_size1) for i in range(self.GNN_depth)])
        self.W_super_to_main = nn.ModuleList(
            [nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.GNN_depth)])

        self.W_zm1 = nn.ModuleList([nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.GNN_depth)])
        self.W_zm2 = nn.ModuleList([nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.GNN_depth)])
        self.W_zs1 = nn.ModuleList([nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.GNN_depth)])
        self.W_zs2 = nn.ModuleList([nn.Linear(self.hidden_size1, self.hidden_size1) for i in range(self.GNN_depth)])
        self.GRU_main = nn.GRUCell(self.hidden_size1, self.hidden_size1)
        self.GRU_super = nn.GRUCell(self.hidden_size1, self.hidden_size1)

        # WLN parameters
        self.label_U2 = nn.ModuleList([nn.Linear(self.hidden_size1 + bond_fdim, self.hidden_size1) for i in
                                       range(self.GNN_depth)])  # assume no edge feature transformation
        self.label_U1 = nn.ModuleList(
            [nn.Linear(self.hidden_size1 * 2, self.hidden_size1) for i in range(self.GNN_depth)])

        """CNN-RNN Module"""
        # CNN parameters
        self.embed_seq = nn.Embedding(len(self.init_word_features), 20, padding_idx=0)
        self.embed_seq.weight = nn.Parameter(self.init_word_features)
        self.embed_seq.weight.requires_grad = False

        self.conv_first = nn.Conv1d(20, self.hidden_size1, kernel_size=self.kernel_size,
                                    padding=(self.kernel_size - 1) / 2)
        self.conv_last = nn.Conv1d(self.hidden_size1, self.hidden_size1, kernel_size=self.kernel_size,
                                   padding=(self.kernel_size - 1) / 2)

        self.plain_CNN = nn.ModuleList([])
        for i in range(self.inner_CNN_depth):
            self.plain_CNN.append(nn.Conv1d(self.hidden_size1, self.hidden_size1, kernel_size=self.kernel_size,
                                            padding=(self.kernel_size - 1) / 2))

        """Affinity Prediction Module"""
        self.super_final = nn.Linear(self.hidden_size1, self.hidden_size2)
        self.c_final = nn.Linear(self.hidden_size1, self.hidden_size2)
        self.p_final = nn.Linear(self.hidden_size1, self.hidden_size2)

        # DMA parameters
        self.mc0 = nn.Linear(hidden_size2, hidden_size2)
        self.mp0 = nn.Linear(hidden_size2, hidden_size2)

        self.mc1 = nn.ModuleList([nn.Linear(self.hidden_size2, self.hidden_size2) for i in range(self.DMA_depth)])
        self.mp1 = nn.ModuleList([nn.Linear(self.hidden_size2, self.hidden_size2) for i in range(self.DMA_depth)])

        self.hc0 = nn.ModuleList([nn.Linear(self.hidden_size2, self.hidden_size2) for i in range(self.DMA_depth)])
        self.hp0 = nn.ModuleList([nn.Linear(self.hidden_size2, self.hidden_size2) for i in range(self.DMA_depth)])
        self.hc1 = nn.ModuleList([nn.Linear(self.hidden_size2, 1) for i in range(self.DMA_depth)])
        self.hp1 = nn.ModuleList([nn.Linear(self.hidden_size2, 1) for i in range(self.DMA_depth)])

        self.c_to_p_transform = nn.ModuleList(
            [nn.Linear(self.hidden_size2, self.hidden_size2) for i in range(self.DMA_depth)])
        self.p_to_c_transform = nn.ModuleList(
            [nn.Linear(self.hidden_size2, self.hidden_size2) for i in range(self.DMA_depth)])

        self.GRU_dma = nn.GRUCell(self.hidden_size2, self.hidden_size2)
        # Output layer
        self.W_out = nn.Linear(self.hidden_size2 * self.hidden_size2 * 2, 1)

        """Pairwise Interaction Prediction Module"""
        self.pairwise_compound = nn.Linear(self.hidden_size1, self.hidden_size1)
        self.pairwise_protein = nn.Linear(self.hidden_size1, self.hidden_size1)

    def mask_softmax(self, a, mask, dim=-1):
        a_max = torch.max(a, dim, keepdim=True)[0]
        a_exp = torch.exp(a - a_max)
        a_exp = a_exp * mask
        a_softmax = a_exp / (torch.sum(a_exp, dim, keepdim=True) + 1e-6)
        return a_softmax

    def graph_conv_module(self, batch_size, vertex_mask, vertex, edge, atom_adj, bond_adj, nbs_mask):
        n_vertex = vertex_mask.size(1)

        # initial features
        vertex_initial = torch.index_select(self.init_atom_features, 0, vertex.view(-1))
        vertex_initial = vertex_initial.view(batch_size, -1, atom_fdim)
        edge_initial = torch.index_select(self.init_bond_features, 0, edge.view(-1))
        edge_initial = edge_initial.view(batch_size, -1, bond_fdim)

        vertex_feature = F.leaky_relu(self.vertex_embedding(vertex_initial), 0.1)
        super_feature = torch.sum(vertex_feature * vertex_mask.view(batch_size, -1, 1), dim=1, keepdim=True)

        for GWM_iter in range(self.GNN_depth):
            # prepare main node features
            for k in range(self.k_head):
                a_main = torch.tanh(self.W_a_main[GWM_iter][k](vertex_feature))
                a_super = torch.tanh(self.W_a_super[GWM_iter][k](super_feature))
                a = self.W_bmm[GWM_iter][k](a_main * super_feature)
                attn = self.mask_softmax(a.view(batch_size, -1), vertex_mask).view(batch_size, -1, 1)
                k_main_to_super = torch.bmm(attn.transpose(1, 2), self.W_main[GWM_iter][k](vertex_feature))
                if k == 0:
                    m_main_to_super = k_main_to_super
                else:
                    m_main_to_super = torch.cat([m_main_to_super, k_main_to_super], dim=-1)  # concat k-head
            main_to_super = torch.tanh(self.W_main_to_super[GWM_iter](m_main_to_super))
            main_self = self.wln_unit(batch_size, vertex_mask, vertex_feature, edge_initial, atom_adj, bond_adj,
                                      nbs_mask, GWM_iter)

            super_to_main = torch.tanh(self.W_super_to_main[GWM_iter](super_feature))
            super_self = torch.tanh(self.W_super[GWM_iter](super_feature))
            # warp gate and GRU for update main node features, use main_self and super_to_main
            z_main = torch.sigmoid(self.W_zm1[GWM_iter](main_self) + self.W_zm2[GWM_iter](super_to_main))
            hidden_main = (1 - z_main) * main_self + z_main * super_to_main
            vertex_feature = self.GRU_main(hidden_main.view(-1, self.hidden_size1),
                                           vertex_feature.view(-1, self.hidden_size1))
            vertex_feature = vertex_feature.view(batch_size, n_vertex, self.hidden_size1)
            # warp gate and GRU for update super node features
            z_supper = torch.sigmoid(self.W_zs1[GWM_iter](super_self) + self.W_zs2[GWM_iter](main_to_super))
            hidden_super = (1 - z_supper) * super_self + z_supper * main_to_super
            super_feature = self.GRU_super(hidden_super.view(batch_size, self.hidden_size1),
                                           super_feature.view(batch_size, self.hidden_size1))
            super_feature = super_feature.view(batch_size, 1, self.hidden_size1)

        return vertex_feature, super_feature

    def wln_unit(self, batch_size, vertex_mask, vertex_features, edge_initial, atom_adj, bond_adj, nbs_mask, GNN_iter):
        n_vertex = vertex_mask.size(1)
        n_nbs = nbs_mask.size(2)

        vertex_mask = vertex_mask.view(batch_size, n_vertex, 1)
        nbs_mask = nbs_mask.view(batch_size, n_vertex, n_nbs, 1)

        vertex_nei = torch.index_select(vertex_features.view(-1, self.hidden_size1), 0, atom_adj).view(batch_size,
                                                                                                       n_vertex, n_nbs,
                                                                                                       self.hidden_size1)
        edge_nei = torch.index_select(edge_initial.view(-1, bond_fdim), 0, bond_adj).view(batch_size, n_vertex, n_nbs,
                                                                                          bond_fdim)

        # Weisfeiler Lehman relabelling
        l_nei = torch.cat((vertex_nei, edge_nei), -1)
        nei_label = F.leaky_relu(self.label_U2[GNN_iter](l_nei), 0.1)
        nei_label = torch.sum(nei_label * nbs_mask, dim=-2)
        new_label = torch.cat((vertex_features, nei_label), 2)
        new_label = self.label_U1[GNN_iter](new_label)
        vertex_features = F.leaky_relu(new_label, 0.1)

        return vertex_features

    def cnn_module(self, sequence):
        ebd = self.embed_seq(sequence)
        ebd = ebd.transpose(1, 2)
        x = F.leaky_relu(self.conv_first(ebd), 0.1)

        for i in range(self.inner_CNN_depth):
            x = self.plain_CNN[i](x)
            x = F.leaky_relu(x, 0.1)

        x = F.leaky_relu(self.conv_last(x), 0.1)
        H = x.transpose(1, 2)
        # H, hidden = self.rnn(H)

        return H

    def pairwise_pred_module(self, batch_size, comp_feature, prot_feature, vertex_mask, seq_mask):
        pairwise_c_feature = F.leaky_relu(self.pairwise_compound(comp_feature), 0.1)
        pairwise_p_feature = F.leaky_relu(self.pairwise_protein(prot_feature), 0.1)
        pairwise_pred = torch.matmul(pairwise_c_feature, pairwise_p_feature.transpose(1, 2))
        # TODO: difference between the pairwise_mask here and in the data?
        pairwise_mask = torch.matmul(vertex_mask.view(batch_size, -1, 1), seq_mask.view(batch_size, 1, -1))
        pairwise_pred = pairwise_pred * pairwise_mask
        return pairwise_pred

    def affinity_pred_module(self, batch_size, comp_feature, prot_feature, super_feature, vertex_mask, seq_mask,
                             pairwise_pred):
        comp_feature = F.leaky_relu(self.c_final(comp_feature), 0.1)
        prot_feature = F.leaky_relu(self.p_final(prot_feature), 0.1)
        super_feature = F.leaky_relu(self.super_final(super_feature.view(batch_size, -1)), 0.1)

        cf, pf = self.dma_gru(batch_size, comp_feature, vertex_mask, prot_feature, seq_mask, pairwise_pred)

        cf = torch.cat([cf.view(batch_size, -1), super_feature.view(batch_size, -1)], dim=1)
        kroneck = F.leaky_relu(
            torch.matmul(cf.view(batch_size, -1, 1), pf.view(batch_size, 1, -1)).view(batch_size, -1), 0.1)

        affinity_pred = self.W_out(kroneck)
        return affinity_pred

    def dma_gru(self, batch_size, comp_feats, vertex_mask, prot_feats, seq_mask, pairwise_pred):
        vertex_mask = vertex_mask.view(batch_size, -1, 1)
        seq_mask = seq_mask.view(batch_size, -1, 1)

        cf = torch.Tensor()
        pf = torch.Tensor()

        c0 = torch.sum(comp_feats * vertex_mask, dim=1) / torch.sum(vertex_mask, dim=1)
        p0 = torch.sum(prot_feats * seq_mask, dim=1) / torch.sum(seq_mask, dim=1)

        m = c0 * p0
        for DMA_iter in range(self.DMA_depth):
            c_to_p = torch.matmul(pairwise_pred.transpose(1, 2),
                                  F.tanh(self.c_to_p_transform[DMA_iter](comp_feats)))  # batch * n_residue * hidden
            p_to_c = torch.matmul(pairwise_pred,
                                  F.tanh(self.p_to_c_transform[DMA_iter](prot_feats)))  # batch * n_vertex * hidden

            c_tmp = F.tanh(self.hc0[DMA_iter](comp_feats)) * F.tanh(self.mc1[DMA_iter](m)).view(batch_size, 1,
                                                                                                -1) * p_to_c
            p_tmp = F.tanh(self.hp0[DMA_iter](prot_feats)) * F.tanh(self.mp1[DMA_iter](m)).view(batch_size, 1,
                                                                                                -1) * c_to_p

            c_att = self.mask_softmax(self.hc1[DMA_iter](c_tmp).view(batch_size, -1), vertex_mask.view(batch_size, -1))
            p_att = self.mask_softmax(self.hp1[DMA_iter](p_tmp).view(batch_size, -1), seq_mask.view(batch_size, -1))

            cf = torch.sum(comp_feats * c_att.view(batch_size, -1, 1), dim=1)
            pf = torch.sum(prot_feats * p_att.view(batch_size, -1, 1), dim=1)

            m = self.GRU_dma(m, cf * pf)

        return cf, pf

    def forward(self, enc_drug, enc_protein):
        vertex_mask, vertex, edge, atom_adj, bond_adj, nbs_mask = enc_drug
        vertex, vertex_mask = vertex
        edge, _ = edge
        atom_adj, _ = atom_adj
        bond_adj, _ = bond_adj
        nbs_mask, _ = enc_drug

        seq_mask, sequence = enc_protein
        
        batch_size = vertex.size(0)

        atom_feature, super_feature = self.graph_conv_module(batch_size, vertex_mask, vertex, edge, atom_adj, bond_adj,
                                                             nbs_mask)
        prot_feature = self.cnn_module(sequence)

        pairwise_pred = self.pairwise_pred_module(batch_size, atom_feature, prot_feature, vertex_mask, seq_mask)
        affinity_pred = self.affinity_pred_module(batch_size, atom_feature, prot_feature, super_feature, vertex_mask,
                                                  seq_mask, pairwise_pred)

        return affinity_pred  # , pairwise_pred