libokj's picture
Upload 299 files
953417b
from datetime import datetime
from pathlib import Path
import re
from typing import Any, Tuple
import pandas as pd
from hydra import TaskFunction
from hydra.core.hydra_config import HydraConfig
from hydra.core.override_parser.overrides_parser import OverridesParser
from hydra.core.utils import _save_config
from hydra.experimental.callbacks import Callback
from hydra.types import RunMode
from hydra._internal.config_loader_impl import ConfigLoaderImpl
from omegaconf import DictConfig, OmegaConf
from omegaconf.errors import MissingMandatoryValue
from deepscreen.utils import get_logger
log = get_logger(__name__)
class CSVExperimentSummary(Callback):
"""On multirun end, aggregate the results from each job's metrics.csv and save them in metrics_summary.csv."""
def __init__(self, filename: str = 'experiment_summary.csv', prefix: str | Tuple[str] = 'test/'):
self.filename = filename
self.prefix = prefix if isinstance(prefix, str) else tuple(prefix)
self.input_experiment_summary = None
self.time = {}
def on_multirun_start(self, config: DictConfig, **kwargs: Any) -> None:
if config.hydra.get('overrides') and config.hydra.overrides.get('task'):
for i, override in enumerate(config.hydra.overrides.task):
if override.startswith("ckpt_path"):
ckpt_path = override.split('=', 1)[1]
if ckpt_path.endswith(('.csv', '.txt', '.tsv', '.ssv', '.psv')):
config.hydra.overrides.task[i] = self.parse_ckpt_path_from_experiment_summary(ckpt_path)
log.info(ckpt_path)
break
if config.hydra.sweeper.get('params'):
if config.hydra.sweeper.params.get('ckpt_path'):
ckpt_path = str(config.hydra.sweeper.params.ckpt_path).strip("'\"")
if ckpt_path.endswith(('.csv', '.txt', '.tsv', '.ssv', '.psv')):
config.hydra.sweeper.params.ckpt_path = self.parse_ckpt_path_from_experiment_summary(ckpt_path)
log.info(ckpt_path)
def on_job_start(self, config: DictConfig, *, task_function: TaskFunction, **kwargs: Any) -> None:
self.time['start'] = datetime.now()
def on_job_end(self, config: DictConfig, job_return, **kwargs: Any) -> None:
# Skip callback if job is DDP subprocess
if "ddp" in job_return.hydra_cfg.hydra.job.name:
return
try:
self.time['end'] = datetime.now()
if config.hydra.mode == RunMode.RUN:
summary_file_path = Path(config.hydra.run.dir) / self.filename
elif config.hydra.mode == RunMode.MULTIRUN:
summary_file_path = Path(config.hydra.sweep.dir) / self.filename
else:
raise RuntimeError('Invalid Hydra `RunMode`.')
if summary_file_path.is_file():
summary_df = pd.read_csv(summary_file_path)
else:
summary_df = pd.DataFrame()
# Add job and override info
info_dict = {}
if job_return.overrides:
info_dict = dict(override.split('=', 1) for override in job_return.overrides)
info_dict['job_status'] = job_return.status.name
info_dict['job_id'] = job_return.hydra_cfg.hydra.job.id
info_dict['wall_time'] = str(self.time['end'] - self.time['start'])
# Add checkpoint info
if info_dict.get('ckpt_path'):
info_dict['ckpt_path'] = str(info_dict['ckpt_path']).strip("'\"")
ckpt_path = str(job_return.cfg.ckpt_path).strip("'\"")
if Path(ckpt_path).is_file():
if info_dict.get('ckpt_path') and ckpt_path != info_dict['ckpt_path']:
info_dict['previous_ckpt_path'] = info_dict['ckpt_path']
info_dict['ckpt_path'] = ckpt_path
if info_dict.get('ckpt_path'):
if (epoch := re.search(r'epoch_(\d+)', info_dict['ckpt_path'])) is not None:
info_dict['best_epoch'] = int(epoch.group(1))
# Add metrics info
metrics_df = pd.DataFrame()
if config.get('logger'):
output_dir = Path(config.hydra.runtime.output_dir).resolve()
csv_metrics_path = output_dir / config.logger.csv.name / "metrics.csv"
if csv_metrics_path.is_file():
log.info(f"Summarizing metrics with prefix `{self.prefix}` from {csv_metrics_path}")
metrics_df = pd.read_csv(csv_metrics_path)
# Find rows where 'test/' columns are not null and reset its epoch to the best model epoch
if info_dict.get('best_epoch'):
test_columns = [col for col in metrics_df.columns if col.startswith('test/')]
if test_columns:
mask = metrics_df[test_columns].notna().any(axis=1)
metrics_df.loc[mask, 'epoch'] = info_dict['best_epoch']
# Group and filter by best epoch
metrics_df = metrics_df.groupby('epoch').first()
metrics_df = metrics_df[metrics_df.index == info_dict['best_epoch']]
else:
log.info(f"No metrics.csv found in {output_dir}")
if metrics_df.empty:
metrics_df = pd.DataFrame(data=info_dict, index=[0])
else:
metrics_df = metrics_df.assign(**info_dict)
metrics_df.index = [0]
# Add extra info from the input batch experiment summary
if self.input_experiment_summary is not None and 'ckpt_path' in metrics_df.columns:
log.info(self.input_experiment_summary['ckpt_path'])
log.info(metrics_df['ckpt_path'])
orig_meta = self.input_experiment_summary[
self.input_experiment_summary['ckpt_path'] == metrics_df['ckpt_path'][0]
].head(1)
if not orig_meta.empty:
orig_meta.index = [0]
metrics_df = metrics_df.astype('O').combine_first(orig_meta.astype('O'))
summary_df = pd.concat([summary_df, metrics_df])
# Drop empty columns
summary_df.dropna(inplace=True, axis=1, how='all')
summary_df.to_csv(summary_file_path, index=False, mode='w')
log.info(f"Experiment summary saved to {summary_file_path}")
except Exception as e:
log.exception("Unable to save the experiment summary due to an error.", exc_info=e)
def parse_ckpt_path_from_experiment_summary(self, ckpt_path):
log.info(ckpt_path)
try:
self.input_experiment_summary = pd.read_csv(
ckpt_path, usecols=lambda col: not col.startswith(self.prefix)
)
self.input_experiment_summary['ckpt_path'] = self.input_experiment_summary['ckpt_path'].apply(
lambda x: x.strip("'\"")
)
ckpt_list = list(set(self.input_experiment_summary['ckpt_path']))
parsed_ckpt_path = ','.join([f"'{ckpt}'" for ckpt in ckpt_list])
return parsed_ckpt_path
except Exception as e:
log.exception(
f'Error in parsing checkpoint paths from experiment_summary file ({ckpt_path}).',
exc_info=e
)
def checkpoint_rerun_config(config: DictConfig):
hydra_cfg = HydraConfig.get()
if not Path(config.ckpt_path).is_file():
raise FileNotFoundError(f'Not a valid checkpoint file: {config.ckpt_path}')
if hydra_cfg.get('output_subdir'):
ckpt_cfg_path = Path(config.ckpt_path).parents[1] / hydra_cfg.output_subdir / 'config.yaml'
hydra_output = Path(hydra_cfg.runtime.output_dir) / hydra_cfg.output_subdir
if ckpt_cfg_path.is_file():
log.info(f"Found config file for the checkpoint at {str(ckpt_cfg_path)}; "
f"merging config overrides with checkpoint config...")
ckpt_cfg = OmegaConf.load(ckpt_cfg_path)
for key, value in ckpt_cfg.items():
OmegaConf.update(config, key, value, merge=False, force_add=True)
# Recompose merged config with overrides
if hydra_cfg.overrides.get('task'):
parser = OverridesParser.create()
parsed_overrides = parser.parse_overrides(overrides=hydra_cfg.overrides.task)
filtered_overrides = []
for override in parsed_overrides:
if override.is_force_add() or override.key_or_group.split('.')[0] in config:
filtered_overrides.append(override)
ConfigLoaderImpl._apply_overrides_to_config(filtered_overrides, config)
_save_config(config, "config.yaml", hydra_output)
return config