Spaces:
Sleeping
Sleeping
Delete deepscreen/data/dti_datamodule.py
Browse files
deepscreen/data/dti_datamodule.py
DELETED
@@ -1,314 +0,0 @@
|
|
1 |
-
# from itertools import product
|
2 |
-
from collections import namedtuple
|
3 |
-
from numbers import Number
|
4 |
-
from typing import Any, Dict, Optional, Sequence, Union, Literal
|
5 |
-
|
6 |
-
# import numpy as np
|
7 |
-
import pandas as pd
|
8 |
-
from lightning import LightningDataModule
|
9 |
-
from torch.utils.data import Dataset, DataLoader, random_split
|
10 |
-
|
11 |
-
from deepscreen.data.utils.label import label_transform
|
12 |
-
from deepscreen.data.utils.collator import collate_fn
|
13 |
-
from deepscreen.data.utils.sampler import SafeBatchSampler
|
14 |
-
|
15 |
-
|
16 |
-
class DTIDataset(Dataset):
|
17 |
-
def __init__(
|
18 |
-
self,
|
19 |
-
task: Literal['regression', 'binary', 'multiclass'],
|
20 |
-
n_classes: Optional[int],
|
21 |
-
data_dir: str,
|
22 |
-
dataset_name: str,
|
23 |
-
drug_featurizer: callable,
|
24 |
-
protein_featurizer: callable,
|
25 |
-
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
|
26 |
-
discard_intermediate: Optional[bool] = False,
|
27 |
-
):
|
28 |
-
df = pd.read_csv(
|
29 |
-
f'{data_dir}{dataset_name}.csv',
|
30 |
-
header=0, sep=',',
|
31 |
-
usecols=lambda x: x in ['X1', 'ID1', 'X2', 'ID2', 'Y', 'U'],
|
32 |
-
dtype={'X1': 'str', 'ID1': 'str',
|
33 |
-
'X2': 'str', 'ID2': 'str',
|
34 |
-
'Y': 'float32', 'U': 'str'}
|
35 |
-
)
|
36 |
-
# if 'ID1' in df:
|
37 |
-
# self.x1_to_id1 = dict(zip(df['X1'], df['ID1']))
|
38 |
-
# if 'ID2' in df:
|
39 |
-
# self.x2_to_id2 = dict(zip(df['X2'], df['ID2']))
|
40 |
-
# self.id2_to_indexes = dict(zip(df['ID2'], range(len(df['ID2']))))
|
41 |
-
# self.x2_to_indexes = dict(zip(df['X2'], range(len(df['X2']))))
|
42 |
-
|
43 |
-
# # train and eval mode data processing (fully labelled)
|
44 |
-
# if 'Y' in df.columns and df['Y'].notnull().all():
|
45 |
-
|
46 |
-
# Forward-fill all non-label columns
|
47 |
-
df.loc[:, df.columns != 'Y'] = df.loc[:, df.columns != 'Y'].ffill(axis=0)
|
48 |
-
|
49 |
-
if 'Y' in df:
|
50 |
-
# Transform labels
|
51 |
-
df['Y'] = df['Y'].apply(label_transform, units=df.get('U', None), thresholds=thresholds,
|
52 |
-
discard_intermediate=discard_intermediate).astype('float32')
|
53 |
-
|
54 |
-
# Filter out rows with a NaN in Y (missing values)
|
55 |
-
df.dropna(subset=['Y'], inplace=True)
|
56 |
-
|
57 |
-
# Validate target labels for training/testing
|
58 |
-
# TODO: check sklearn.utils.multiclass.check_classification_targets
|
59 |
-
match task:
|
60 |
-
case 'regression':
|
61 |
-
assert all(df['Y'].apply(lambda x: isinstance(x, Number))), \
|
62 |
-
f"Y for task `regression` must be numeric; got {set(df['Y'].apply(type))}."
|
63 |
-
case 'binary':
|
64 |
-
assert all(df['Y'].isin([0, 1])), \
|
65 |
-
f"Y for task `binary` (classification) must be 0 or 1, but Y got {pd.unique(df['Y'])}." \
|
66 |
-
"\nYou may set `thresholds` to discretize continuous labels."
|
67 |
-
case 'multiclass':
|
68 |
-
assert n_classes >= 3, f'n_classes for task `multiclass` (classification) must be at least 3.'
|
69 |
-
assert all(df['Y'].apply(lambda x: x.is_integer() and x >= 0)), \
|
70 |
-
f"Y for task `multiclass` (classification) must be non-negative integers, " \
|
71 |
-
f"but Y got {pd.unique(df['Y'])}." \
|
72 |
-
"\nYou may set `thresholds` to discretize continuous labels."
|
73 |
-
target_n_unique = df['Y'].nunique()
|
74 |
-
assert target_n_unique == n_classes, \
|
75 |
-
f"You have set n_classes for task `multiclass` (classification) task to {n_classes}, " \
|
76 |
-
f"but Y has {target_n_unique} unique labels."
|
77 |
-
|
78 |
-
# # Predict mode data processing
|
79 |
-
# else:
|
80 |
-
# df = pd.DataFrame(product(df['X1'].dropna(), df['X2'].dropna()), columns=['X1', 'X2'])
|
81 |
-
# if hasattr(self, "x1_to_id1"):
|
82 |
-
# df['ID1'] = df['X1'].map(self.x1_to_id1)
|
83 |
-
# if hasattr(self, "x1_to_id2"):
|
84 |
-
# df['ID2'] = df['X2'].map(self.x2_to_id2)
|
85 |
-
|
86 |
-
# self.smiles = df['X1']
|
87 |
-
# self.fasta = df['X2']
|
88 |
-
# self.smiles_ids = df.get('ID1', df['X1'])
|
89 |
-
# self.fasta_ids = df.get('ID2', df['X2'])
|
90 |
-
# self.labels = df.get('Y', None)
|
91 |
-
|
92 |
-
self.df = df
|
93 |
-
self.drug_featurizer = drug_featurizer if drug_featurizer is not None else (lambda x: x)
|
94 |
-
self.protein_featurizer = protein_featurizer if protein_featurizer is not None else (lambda x: x)
|
95 |
-
self.n_classes = df['Y'].nunique()
|
96 |
-
# self.train = train
|
97 |
-
|
98 |
-
self.Data = namedtuple('Data', ['FT1', 'ID1', 'FT2', 'ID2', 'Y'])
|
99 |
-
|
100 |
-
def __len__(self):
|
101 |
-
return len(self.df.index)
|
102 |
-
|
103 |
-
def __getitem__(self, idx):
|
104 |
-
sample = self.df.loc[idx]
|
105 |
-
return self.Data(
|
106 |
-
FT1=self.drug_featurizer(sample['X1']),
|
107 |
-
ID1=sample.get('ID1', sample['X1']),
|
108 |
-
FT2=self.protein_featurizer(sample['X2']),
|
109 |
-
ID2=sample.get('ID2', sample['X2']),
|
110 |
-
Y=sample.get('Y')
|
111 |
-
)
|
112 |
-
# {
|
113 |
-
# 'FT1': self.drug_featurizer(sample['X1']),
|
114 |
-
# 'ID1': sample.get('ID1', sample['X1']),
|
115 |
-
# 'FT2': self.protein_featurizer(sample['X2']),
|
116 |
-
# 'ID2': sample.get('ID2', sample['X2']),
|
117 |
-
# 'Y': sample.get('Y')
|
118 |
-
# }
|
119 |
-
# if self.train:
|
120 |
-
# sample = self.drug_featurizer(self.smiles[idx]), self.protein_featurizer(self.fasta[idx]), self.labels[idx]
|
121 |
-
# sample = {
|
122 |
-
# 'FT1': self.drug_featurizer(self.smiles[idx]),
|
123 |
-
# 'FT2': self.protein_featurizer(self.fasta[idx]),
|
124 |
-
# 'ID2': self.smiles_ids[idx],
|
125 |
-
# }
|
126 |
-
# else:
|
127 |
-
# # sample = self.drug_featurizer(self.smiles[idx]), self.protein_featurizer(self.fasta[idx])
|
128 |
-
# sample = {
|
129 |
-
# 'FT1': self.drug_featurizer(self.smiles[idx]),
|
130 |
-
# 'FT2': self.protein_featurizer(self.fasta[idx]),
|
131 |
-
# }
|
132 |
-
#
|
133 |
-
# if all([True if n is not None else False for n in sample.values()]):
|
134 |
-
# return sample # | {
|
135 |
-
# # 'ID1': self.smiles_ids[idx],
|
136 |
-
# # 'X1': self.drug_featurizer(self.smiles[idx]),
|
137 |
-
# # 'ID2': self.fasta_ids[idx],
|
138 |
-
# # 'X2': self.protein_featurizer(self.fasta[idx]),
|
139 |
-
# # }
|
140 |
-
# else:
|
141 |
-
# return self.__getitem__(np.random.randint(0, self.size))
|
142 |
-
|
143 |
-
|
144 |
-
class DTIdatamodule(LightningDataModule):
|
145 |
-
"""
|
146 |
-
DTI DataModule
|
147 |
-
|
148 |
-
A DataModule implements 5 key methods:
|
149 |
-
|
150 |
-
def prepare_data(self):
|
151 |
-
# things to do on 1 GPU/TPU (not on every GPU/TPU in DDP)
|
152 |
-
# download data, pre-process, split, save to disk, etc.
|
153 |
-
def setup(self, stage):
|
154 |
-
# things to do on every process in DDP
|
155 |
-
# load data, set variables, etc.
|
156 |
-
def train_dataloader(self):
|
157 |
-
# return train dataloader
|
158 |
-
def val_dataloader(self):
|
159 |
-
# return validation dataloader
|
160 |
-
def test_dataloader(self):
|
161 |
-
# return test dataloader
|
162 |
-
def teardown(self):
|
163 |
-
# called on every process in DDP
|
164 |
-
# clean up after fit or test
|
165 |
-
|
166 |
-
This allows you to share a full dataset without explaining how to download,
|
167 |
-
split, transform and process the data.
|
168 |
-
|
169 |
-
Read the docs:
|
170 |
-
https://pytorch-lightning.readthedocs.io/en/latest/extensions/datamodules.html
|
171 |
-
"""
|
172 |
-
|
173 |
-
def __init__(
|
174 |
-
self,
|
175 |
-
task: Literal['regression', 'binary', 'multiclass'],
|
176 |
-
n_classes: Optional[int],
|
177 |
-
train: bool,
|
178 |
-
drug_featurizer: callable,
|
179 |
-
protein_featurizer: callable,
|
180 |
-
batch_size: int,
|
181 |
-
train_val_test_split: Optional[Sequence[Number]],
|
182 |
-
num_workers: int = 0,
|
183 |
-
thresholds: Optional[Union[Number, Sequence[Number]]] = None,
|
184 |
-
pin_memory: bool = False,
|
185 |
-
data_dir: str = "data/",
|
186 |
-
dataset_name: Optional[str] = None,
|
187 |
-
split: Optional[callable] = random_split,
|
188 |
-
):
|
189 |
-
super().__init__()
|
190 |
-
|
191 |
-
# this line allows to access init params with 'self.hparams' attribute
|
192 |
-
# also ensures init params will be stored in ckpt
|
193 |
-
self.save_hyperparameters(logger=False)
|
194 |
-
|
195 |
-
# data processing
|
196 |
-
self.data_split = split
|
197 |
-
|
198 |
-
self.data_train: Optional[Dataset] = None
|
199 |
-
self.data_val: Optional[Dataset] = None
|
200 |
-
self.data_test: Optional[Dataset] = None
|
201 |
-
self.data_predict: Optional[Dataset] = None
|
202 |
-
|
203 |
-
def prepare_data(self):
|
204 |
-
"""
|
205 |
-
Download data if needed.
|
206 |
-
Do not use it to assign state (e.g., self.x = x).
|
207 |
-
"""
|
208 |
-
|
209 |
-
def setup(self, stage: Optional[str] = None, encoding: str = None):
|
210 |
-
"""
|
211 |
-
Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
|
212 |
-
This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
|
213 |
-
careful not to execute data splitting twice.
|
214 |
-
"""
|
215 |
-
# TODO test SafeBatchSampler (which skips samples with any None without introducing variable batch size)
|
216 |
-
# load and split datasets only if not loaded in initialization
|
217 |
-
if not any([self.data_train, self.data_val, self.data_test, self.data_predict]):
|
218 |
-
dataset = DTIDataset(
|
219 |
-
task=self.hparams.task,
|
220 |
-
n_classes=self.hparams.n_classes,
|
221 |
-
data_dir=self.hparams.data_dir,
|
222 |
-
drug_featurizer=self.hparams.drug_featurizer,
|
223 |
-
protein_featurizer=self.hparams.protein_featurizer,
|
224 |
-
dataset_name=self.hparams.dataset_name,
|
225 |
-
thresholds=self.hparams.thresholds,
|
226 |
-
)
|
227 |
-
|
228 |
-
if self.hparams.train:
|
229 |
-
self.data_train, self.data_val, self.data_test = self.data_split(
|
230 |
-
dataset=dataset,
|
231 |
-
lengths=self.hparams.train_val_test_split
|
232 |
-
)
|
233 |
-
else:
|
234 |
-
self.data_test = self.data_predict = dataset
|
235 |
-
|
236 |
-
def train_dataloader(self):
|
237 |
-
return DataLoader(
|
238 |
-
dataset=self.data_train,
|
239 |
-
batch_sampler=SafeBatchSampler(
|
240 |
-
data_source=self.data_train,
|
241 |
-
batch_size=self.hparams.batch_size,
|
242 |
-
drop_last=True,
|
243 |
-
shuffle=True,
|
244 |
-
),
|
245 |
-
# batch_size=self.hparams.batch_size,
|
246 |
-
# shuffle=True,
|
247 |
-
num_workers=self.hparams.num_workers,
|
248 |
-
pin_memory=self.hparams.pin_memory,
|
249 |
-
collate_fn=collate_fn,
|
250 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
251 |
-
)
|
252 |
-
|
253 |
-
def val_dataloader(self):
|
254 |
-
return DataLoader(
|
255 |
-
dataset=self.data_val,
|
256 |
-
batch_sampler=SafeBatchSampler(
|
257 |
-
data_source=self.data_val,
|
258 |
-
batch_size=self.hparams.batch_size,
|
259 |
-
drop_last=False,
|
260 |
-
shuffle=False,
|
261 |
-
),
|
262 |
-
# batch_size=self.hparams.batch_size,
|
263 |
-
# shuffle=False,
|
264 |
-
num_workers=self.hparams.num_workers,
|
265 |
-
pin_memory=self.hparams.pin_memory,
|
266 |
-
collate_fn=collate_fn,
|
267 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
268 |
-
)
|
269 |
-
|
270 |
-
def test_dataloader(self):
|
271 |
-
return DataLoader(
|
272 |
-
dataset=self.data_test,
|
273 |
-
batch_sampler=SafeBatchSampler(
|
274 |
-
data_source=self.data_test,
|
275 |
-
batch_size=self.hparams.batch_size,
|
276 |
-
drop_last=False,
|
277 |
-
shuffle=False,
|
278 |
-
),
|
279 |
-
# batch_size=self.hparams.batch_size,
|
280 |
-
# shuffle=False,
|
281 |
-
num_workers=self.hparams.num_workers,
|
282 |
-
pin_memory=self.hparams.pin_memory,
|
283 |
-
collate_fn=collate_fn,
|
284 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
285 |
-
)
|
286 |
-
|
287 |
-
def predict_dataloader(self):
|
288 |
-
return DataLoader(
|
289 |
-
dataset=self.data_predict,
|
290 |
-
batch_sampler=SafeBatchSampler(
|
291 |
-
data_source=self.data_predict,
|
292 |
-
batch_size=self.hparams.batch_size,
|
293 |
-
drop_last=False,
|
294 |
-
shuffle=False,
|
295 |
-
),
|
296 |
-
# batch_size=self.hparams.batch_size,
|
297 |
-
# shuffle=False,
|
298 |
-
num_workers=self.hparams.num_workers,
|
299 |
-
pin_memory=self.hparams.pin_memory,
|
300 |
-
collate_fn=collate_fn,
|
301 |
-
persistent_workers=True if self.hparams.num_workers > 0 else False
|
302 |
-
)
|
303 |
-
|
304 |
-
def teardown(self, stage: Optional[str] = None):
|
305 |
-
"""Clean up after fit or test."""
|
306 |
-
pass
|
307 |
-
|
308 |
-
def state_dict(self):
|
309 |
-
"""Extra things to save to checkpoint."""
|
310 |
-
return {}
|
311 |
-
|
312 |
-
def load_state_dict(self, state_dict: Dict[str, Any]):
|
313 |
-
"""Things to do when loading checkpoint."""
|
314 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|