|
<!DOCTYPE html> |
|
<html lang="en"> |
|
<head> |
|
<meta charset="UTF-8"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"> |
|
<title>TrustAlert: News Anomaly Detection</title> |
|
<style> |
|
body { |
|
font-family: 'Segoe UI', sans-serif; |
|
line-height: 1.6; |
|
margin: 0; |
|
padding: 0; |
|
color: #333; |
|
} |
|
header { |
|
background-color: #2a4d69; |
|
color: white !important; |
|
padding: 20px; |
|
text-align: center; |
|
} |
|
section { |
|
padding: 20px; |
|
margin: 20px auto; |
|
color-scheme: light; |
|
} |
|
ul { |
|
padding-left: 20px; |
|
} |
|
body, p, ul, li, strong, code { |
|
color: #333; |
|
} |
|
</style> |
|
</head> |
|
<body> |
|
<header> |
|
<h1 style="color:white !important;">🛡️ TrustAlert: News Time Series Anomaly Detection</h1> |
|
<p style="color:white !important;">Detecting anomalies in disease-related news coverage using advanced time series analysis</p> |
|
</header> |
|
<section> |
|
<p>This tool analyzes temporal patterns in disease-related news coverage to identify potential outbreaks or unusual events. By detecting anomalies in the frequency of disease mentions, we can help public health officials spot emerging health concerns early.</p> |
|
</section> |
|
</body> |
|
</html> |