Spaces:
Running
Running
File size: 15,552 Bytes
e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 7bbab39 e4f1db2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
{
"algorithms": {
"svm": {
"name": "Support Vector Machine",
"category": "classical_ml",
"description": "A supervised learning algorithm that finds optimal hyperplanes for classification and regression tasks",
"synonyms": [
"support vector machine",
"SVM",
"support vector classifier",
"support vector regression",
"SVR"
],
"blacklist": [
"stroke volume monitoring",
"severe viral meningitis",
"syncope vasovagal mechanisms",
"superior vena cava",
"small vessel disease"
]
},
"decision_tree": {
"name": "Decision Tree",
"category": "classical_ml",
"description": "A tree-like model that makes decisions by splitting data based on feature values",
"synonyms": [
"decision tree",
"decision trees",
"DT",
"CART",
"classification tree",
"regression tree"
]
},
"random_forest": {
"name": "Random Forest",
"category": "classical_ml",
"description": "An ensemble method that combines multiple decision trees for improved accuracy",
"synonyms": [
"random forest",
"RF",
"random forests",
"forest classifier"
],
"blacklist": [
"radiofrequency",
"rheumatoid factor",
"risk factor",
"renal failure",
"respiratory failure",
"reticular formation"
]
},
"xgboost": {
"name": "XGBoost",
"category": "classical_ml",
"description": "Extreme Gradient Boosting - an optimized gradient boosting framework",
"synonyms": [
"xgboost",
"XGBoost",
"extreme gradient boosting",
"XGB"
]
},
"logistic_regression": {
"name": "Logistic Regression",
"category": "classical_ml",
"description": "A linear model for binary and multiclass classification problems",
"synonyms": [
"logistic regression",
"logit",
"logistic model",
"LR"
]
},
"naive_bayes": {
"name": "Naive Bayes",
"category": "classical_ml",
"description": "A probabilistic classifier based on Bayes' theorem with independence assumptions",
"synonyms": [
"naive bayes",
"Naive Bayes",
"NB",
"Bayes classifier"
]
},
"knn": {
"name": "K-Nearest Neighbors",
"category": "classical_ml",
"description": "A non-parametric method that classifies data points based on the class of their nearest neighbors",
"synonyms": [
"k-nearest neighbors",
"KNN",
"k-NN",
"nearest neighbor",
"k nearest neighbour"
]
},
"kmeans": {
"name": "K-Means Clustering",
"category": "classical_ml",
"description": "An unsupervised clustering algorithm that partitions data into k clusters",
"synonyms": [
"k-means",
"K-means",
"kmeans",
"k-means clustering",
"k means"
]
},
"gradient_boosting": {
"name": "Gradient Boosting",
"category": "classical_ml",
"description": "An ensemble method that builds models sequentially to correct errors of previous models",
"synonyms": [
"gradient boosting",
"GB",
"GBM",
"gradient boosted trees",
"gradient boosting machine"
]
},
"ada_boost": {
"name": "AdaBoost",
"category": "classical_ml",
"description": "Adaptive Boosting algorithm that combines weak learners into a strong classifier",
"synonyms": [
"AdaBoost",
"ada boost",
"adaptive boosting",
"adaboost"
]
},
"pca": {
"name": "Principal Component Analysis",
"category": "classical_ml",
"description": "A dimensionality reduction technique that finds principal components of data variance",
"synonyms": [
"PCA",
"principal component analysis",
"principal components"
],
"blacklist": [
"posterior cerebral artery",
"prostate cancer antigen",
"patient-controlled analgesia",
"percutaneous coronary angioplasty",
"primary care physician",
"polycystic ovary syndrome"
]
},
"linear_regression": {
"name": "Linear Regression",
"category": "classical_ml",
"description": "A linear approach to modeling the relationship between variables",
"synonyms": [
"linear regression",
"ordinary least squares",
"OLS",
"linear model"
]
},
"cnn": {
"name": "Convolutional Neural Network",
"category": "deep_learning",
"description": "Deep learning architecture specialized for processing grid-like data such as images",
"synonyms": [
"convolutional neural network",
"CNN",
"ConvNet",
"convolutional network",
"deep convolutional",
"conv neural network",
"convolution neural network"
],
"blacklist": [
"cranial nerve nuclei",
"central nervous system",
"chronic kidney disease",
"clinical nurse navigator",
"calcineurin inhibitor"
]
},
"lstm": {
"name": "Long Short-Term Memory",
"category": "deep_learning",
"description": "A type of recurrent neural network capable of learning long-term dependencies",
"synonyms": [
"LSTM",
"long short-term memory",
"long short term memory",
"LSTM network"
]
},
"transformer": {
"name": "Transformer",
"category": "deep_learning",
"description": "Attention-based neural network architecture for sequence-to-sequence tasks",
"synonyms": [
"transformer",
"transformers",
"transformer model",
"transformer architecture",
"self-attention"
]
},
"resnet": {
"name": "ResNet",
"category": "deep_learning",
"description": "Residual Neural Network - a deep CNN architecture with skip connections",
"synonyms": [
"ResNet",
"resnet",
"residual network",
"residual neural network"
]
},
"unet": {
"name": "U-Net",
"category": "deep_learning",
"description": "A CNN architecture for biomedical image segmentation with encoder-decoder structure",
"synonyms": [
"U-Net",
"UNet",
"u-net",
"unet"
]
},
"gan": {
"name": "Generative Adversarial Network",
"category": "deep_learning",
"description": "A framework where two neural networks compete to generate realistic data",
"synonyms": [
"generative adversarial network",
"generative adversarial networks",
"GANs",
"GAN model",
"GAN network",
"adversarial network",
"adversarial training"
],
"blacklist": [
"giant axonal neuropathy",
"Giant Axonal Neuropathy",
"GAN neuropathy",
"axonal neuropathy",
"ganglion",
"ganglia",
"ganglioside",
"gangliosides",
"ganglionic",
"gangrene",
"gangrenous",
"Ganoderma",
"ganoderic",
"ganciclovir",
"gastric antral nodularity",
"gonadotropin-releasing hormone antagonist",
"glucosamine",
"galactosamine",
"N-acetylgalactosamine",
"GalNAc"
]
},
"autoencoder": {
"name": "Autoencoder",
"category": "deep_learning",
"description": "Neural networks that learn efficient representations by encoding and decoding data",
"synonyms": [
"autoencoder",
"auto-encoder",
"autoencoders",
"variational autoencoder",
"VAE"
]
},
"vgg": {
"name": "VGG",
"category": "deep_learning",
"description": "Very Deep Convolutional Networks - a CNN architecture with small convolution filters",
"synonyms": [
"VGG",
"VGG-16",
"VGG-19",
"VGGNet"
]
},
"rnn": {
"name": "Recurrent Neural Network",
"category": "deep_learning",
"description": "Neural networks with memory that can process sequences of data",
"synonyms": [
"RNN",
"recurrent neural network",
"recurrent network",
"RNNs"
],
"blacklist": [
"ribonuclease",
"registered nurse navigator",
"reactive nitrogen species"
]
},
"gru": {
"name": "Gated Recurrent Unit",
"category": "deep_learning",
"description": "Simplified variant of LSTM with fewer parameters and faster training",
"synonyms": [
"GRU",
"gated recurrent unit",
"gated recurrent units",
"GRUs"
]
},
"yolo": {
"name": "YOLO",
"category": "deep_learning",
"description": "You Only Look Once - real-time object detection algorithm",
"synonyms": [
"YOLO",
"you only look once",
"YOLOv3",
"YOLOv4",
"YOLOv5"
]
},
"capsnet": {
"name": "Capsule Network",
"category": "deep_learning",
"description": "Neural network architecture that uses capsules to better model hierarchical relationships",
"synonyms": [
"CapsNet",
"capsule network",
"capsule networks",
"dynamic routing"
]
},
"gpt": {
"name": "GPT",
"category": "llms",
"description": "Generative Pre-trained Transformer - OpenAI's large language model family",
"synonyms": [
"GPT",
"gpt",
"generative pre-trained transformer",
"ChatGPT",
"GPT-3",
"GPT-4",
"GPT-4o",
"OpenAI GPT"
],
"blacklist": [
"glucose-6-phosphate transporter",
"glutamic pyruvic transaminase",
"glutathione peroxidase",
"glycerophosphate",
"guanosine triphosphate"
]
},
"claude": {
"name": "Claude",
"category": "llms",
"description": "Anthropic's AI assistant and large language model family",
"synonyms": [
"Claude",
"claude",
"Anthropic Claude",
"Claude-3",
"Claude Sonnet",
"Claude Haiku",
"Claude Opus"
]
},
"bert": {
"name": "BERT",
"category": "llms",
"description": "Bidirectional Encoder Representations from Transformers - Google's pre-trained language model",
"synonyms": [
"BERT",
"bert",
"bidirectional encoder representations",
"BERT model",
"Google BERT"
],
"blacklist": [
"behavioral emergency response team",
"biomedical emergency response team",
"blood-retinal barrier transport",
"bronchial epithelial cell"
]
},
"gemini": {
"name": "Gemini",
"category": "llms",
"description": "Google's multimodal large language model family",
"synonyms": [
"Gemini",
"gemini",
"Google Gemini",
"Gemini Pro",
"Gemini Ultra",
"Gemini Nano"
]
},
"llama": {
"name": "LLaMA",
"category": "llms",
"description": "Large Language Model Meta AI - Meta's open-source language model family",
"synonyms": [
"LLaMA",
"llama",
"Llama",
"Meta LLaMA",
"Llama-2",
"Llama 2",
"Llama 3",
"Code Llama"
]
},
"qwen": {
"name": "Qwen",
"category": "llms",
"description": "Alibaba's large language model series with multilingual capabilities",
"synonyms": [
"Qwen",
"qwen",
"Alibaba Qwen",
"Qwen-7B",
"Qwen-14B",
"Qwen-72B",
"Tongyi Qianwen"
]
},
"deepseek": {
"name": "DeepSeek",
"category": "llms",
"description": "DeepSeek's large language model optimized for code and reasoning",
"synonyms": [
"DeepSeek",
"deepseek",
"DeepSeek Coder",
"DeepSeek LLM",
"DeepSeek-V2"
]
},
"mistral": {
"name": "Mistral",
"category": "llms",
"description": "Mistral AI's efficient and powerful open-source language models",
"synonyms": [
"Mistral",
"mistral",
"Mistral 7B",
"Mixtral",
"Mistral AI",
"Mixtral 8x7B"
]
},
"palm": {
"name": "PaLM",
"category": "llms",
"description": "Pathways Language Model - Google's large-scale language model",
"synonyms": [
"PaLM",
"palm",
"Pathways Language Model",
"PaLM-2",
"Google PaLM"
]
},
"t5": {
"name": "T5",
"category": "llms",
"description": "Text-to-Text Transfer Transformer - Google's unified text processing model",
"synonyms": [
"T5",
"t5",
"text-to-text transfer transformer",
"Google T5"
],
"blacklist": [
"T5 vertebra",
"T5 spinal",
"fifth thoracic vertebra",
"thoracic vertebra 5",
"T5 nerve root",
"T5 dermatome"
]
},
"roberta": {
"name": "RoBERTa",
"category": "llms",
"description": "Robustly Optimized BERT Pretraining Approach - Meta's improved BERT variant",
"synonyms": [
"RoBERTa",
"roberta",
"robustly optimized BERT",
"Meta RoBERTa"
]
},
"phi": {
"name": "Phi",
"category": "llms",
"description": "Microsoft's small language model series optimized for efficiency",
"synonyms": [
"Microsoft Phi",
"Microsoft Phi-3",
"Microsoft Phi-2",
"Microsoft Phi-1",
"Phi language model",
"Phi LLM",
"Phi small language model"
],
"blacklist": [
"phi angle",
"phi coefficient",
"phi correlation",
"dihedral angle",
"phi psi angles",
"ramachandran plot",
"protein phi",
"phi torsion",
"golden ratio phi",
"phi statistic",
"phi phenomenon",
"phi value analysis",
"protected health information",
"personal health information",
"phosphatidylinositol",
"bacteriophage phi",
"phage phi",
"phi bacteriophage",
"phi X174",
"phi 6",
"phi 29",
"phi92",
"magnetic flux phi",
"flux phi",
"phi magnetic",
"volumetric flux",
"flow rate phi",
"phi value",
"phi values",
"phi analysis",
"phi-value analysis",
"protein folding phi",
"transition state phi",
"nucleation condensation phi",
"pharmacologic MRI phi",
"phMRI",
"DICOM phi",
"medical imaging phi",
"phi function",
"phi distribution",
"phi parameter",
"phi variable",
"phi measurement",
"phi calculation"
]
},
"falcon": {
"name": "Falcon",
"category": "llms",
"description": "Technology Innovation Institute's open-source large language model",
"synonyms": [
"Falcon",
"falcon",
"Falcon-7B",
"Falcon-40B",
"Falcon-180B",
"TII Falcon"
]
}
}
} |