File size: 15,552 Bytes
e4f1db2
 
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
7bbab39
e4f1db2
7bbab39
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f1db2
 
 
 
 
7bbab39
 
 
 
 
 
 
 
e4f1db2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
{
  "algorithms": {
    "svm": {
      "name": "Support Vector Machine",
      "category": "classical_ml",
      "description": "A supervised learning algorithm that finds optimal hyperplanes for classification and regression tasks",
      "synonyms": [
        "support vector machine",
        "SVM",
        "support vector classifier",
        "support vector regression",
        "SVR"
      ],
      "blacklist": [
        "stroke volume monitoring",
        "severe viral meningitis",
        "syncope vasovagal mechanisms",
        "superior vena cava",
        "small vessel disease"
      ]
    },
    "decision_tree": {
      "name": "Decision Tree",
      "category": "classical_ml",
      "description": "A tree-like model that makes decisions by splitting data based on feature values",
      "synonyms": [
        "decision tree",
        "decision trees",
        "DT",
        "CART",
        "classification tree",
        "regression tree"
      ]
    },
    "random_forest": {
      "name": "Random Forest",
      "category": "classical_ml",
      "description": "An ensemble method that combines multiple decision trees for improved accuracy",
      "synonyms": [
        "random forest",
        "RF",
        "random forests",
        "forest classifier"
      ],
      "blacklist": [
        "radiofrequency",
        "rheumatoid factor",
        "risk factor",
        "renal failure",
        "respiratory failure",
        "reticular formation"
      ]
    },
    "xgboost": {
      "name": "XGBoost",
      "category": "classical_ml",
      "description": "Extreme Gradient Boosting - an optimized gradient boosting framework",
      "synonyms": [
        "xgboost",
        "XGBoost",
        "extreme gradient boosting",
        "XGB"
      ]
    },
    "logistic_regression": {
      "name": "Logistic Regression",
      "category": "classical_ml",
      "description": "A linear model for binary and multiclass classification problems",
      "synonyms": [
        "logistic regression",
        "logit",
        "logistic model",
        "LR"
      ]
    },
    "naive_bayes": {
      "name": "Naive Bayes",
      "category": "classical_ml",
      "description": "A probabilistic classifier based on Bayes' theorem with independence assumptions",
      "synonyms": [
        "naive bayes",
        "Naive Bayes",
        "NB",
        "Bayes classifier"
      ]
    },
    "knn": {
      "name": "K-Nearest Neighbors",
      "category": "classical_ml",
      "description": "A non-parametric method that classifies data points based on the class of their nearest neighbors",
      "synonyms": [
        "k-nearest neighbors",
        "KNN",
        "k-NN",
        "nearest neighbor",
        "k nearest neighbour"
      ]
    },
    "kmeans": {
      "name": "K-Means Clustering",
      "category": "classical_ml",
      "description": "An unsupervised clustering algorithm that partitions data into k clusters",
      "synonyms": [
        "k-means",
        "K-means",
        "kmeans",
        "k-means clustering",
        "k means"
      ]
    },
    "gradient_boosting": {
      "name": "Gradient Boosting",
      "category": "classical_ml",
      "description": "An ensemble method that builds models sequentially to correct errors of previous models",
      "synonyms": [
        "gradient boosting",
        "GB",
        "GBM",
        "gradient boosted trees",
        "gradient boosting machine"
      ]
    },
    "ada_boost": {
      "name": "AdaBoost",
      "category": "classical_ml",
      "description": "Adaptive Boosting algorithm that combines weak learners into a strong classifier",
      "synonyms": [
        "AdaBoost",
        "ada boost",
        "adaptive boosting",
        "adaboost"
      ]
    },
    "pca": {
      "name": "Principal Component Analysis",
      "category": "classical_ml",
      "description": "A dimensionality reduction technique that finds principal components of data variance",
      "synonyms": [
        "PCA",
        "principal component analysis",
        "principal components"
      ],
      "blacklist": [
        "posterior cerebral artery",
        "prostate cancer antigen",
        "patient-controlled analgesia",
        "percutaneous coronary angioplasty",
        "primary care physician",
        "polycystic ovary syndrome"
      ]
    },
    "linear_regression": {
      "name": "Linear Regression",
      "category": "classical_ml",
      "description": "A linear approach to modeling the relationship between variables",
      "synonyms": [
        "linear regression",
        "ordinary least squares",
        "OLS",
        "linear model"
      ]
    },
    "cnn": {
      "name": "Convolutional Neural Network",
      "category": "deep_learning",
      "description": "Deep learning architecture specialized for processing grid-like data such as images",
      "synonyms": [
        "convolutional neural network",
        "CNN",
        "ConvNet",
        "convolutional network",
        "deep convolutional",
        "conv neural network",
        "convolution neural network"
      ],
      "blacklist": [
        "cranial nerve nuclei",
        "central nervous system",
        "chronic kidney disease",
        "clinical nurse navigator",
        "calcineurin inhibitor"
      ]
    },
    "lstm": {
      "name": "Long Short-Term Memory",
      "category": "deep_learning",
      "description": "A type of recurrent neural network capable of learning long-term dependencies",
      "synonyms": [
        "LSTM",
        "long short-term memory",
        "long short term memory",
        "LSTM network"
      ]
    },
    "transformer": {
      "name": "Transformer",
      "category": "deep_learning",
      "description": "Attention-based neural network architecture for sequence-to-sequence tasks",
      "synonyms": [
        "transformer",
        "transformers",
        "transformer model",
        "transformer architecture",
        "self-attention"
      ]
    },
    "resnet": {
      "name": "ResNet",
      "category": "deep_learning",
      "description": "Residual Neural Network - a deep CNN architecture with skip connections",
      "synonyms": [
        "ResNet",
        "resnet",
        "residual network",
        "residual neural network"
      ]
    },
    "unet": {
      "name": "U-Net",
      "category": "deep_learning",
      "description": "A CNN architecture for biomedical image segmentation with encoder-decoder structure",
      "synonyms": [
        "U-Net",
        "UNet",
        "u-net",
        "unet"
      ]
    },
    "gan": {
      "name": "Generative Adversarial Network",
      "category": "deep_learning",
      "description": "A framework where two neural networks compete to generate realistic data",
      "synonyms": [
        "generative adversarial network",
        "generative adversarial networks",
        "GANs",
        "GAN model",
        "GAN network",
        "adversarial network",
        "adversarial training"
      ],
      "blacklist": [
        "giant axonal neuropathy",
        "Giant Axonal Neuropathy",
        "GAN neuropathy",
        "axonal neuropathy",
        "ganglion",
        "ganglia",
        "ganglioside",
        "gangliosides",
        "ganglionic",
        "gangrene",
        "gangrenous",
        "Ganoderma",
        "ganoderic",
        "ganciclovir",
        "gastric antral nodularity",
        "gonadotropin-releasing hormone antagonist",
        "glucosamine",
        "galactosamine",
        "N-acetylgalactosamine",
        "GalNAc"
      ]
    },
    "autoencoder": {
      "name": "Autoencoder",
      "category": "deep_learning",
      "description": "Neural networks that learn efficient representations by encoding and decoding data",
      "synonyms": [
        "autoencoder",
        "auto-encoder",
        "autoencoders",
        "variational autoencoder",
        "VAE"
      ]
    },
    "vgg": {
      "name": "VGG",
      "category": "deep_learning",
      "description": "Very Deep Convolutional Networks - a CNN architecture with small convolution filters",
      "synonyms": [
        "VGG",
        "VGG-16",
        "VGG-19",
        "VGGNet"
      ]
    },
    "rnn": {
      "name": "Recurrent Neural Network",
      "category": "deep_learning",
      "description": "Neural networks with memory that can process sequences of data",
      "synonyms": [
        "RNN",
        "recurrent neural network",
        "recurrent network",
        "RNNs"
      ],
      "blacklist": [
        "ribonuclease",
        "registered nurse navigator",
        "reactive nitrogen species"
      ]
    },
    "gru": {
      "name": "Gated Recurrent Unit",
      "category": "deep_learning",
      "description": "Simplified variant of LSTM with fewer parameters and faster training",
      "synonyms": [
        "GRU",
        "gated recurrent unit",
        "gated recurrent units",
        "GRUs"
      ]
    },
    "yolo": {
      "name": "YOLO",
      "category": "deep_learning",
      "description": "You Only Look Once - real-time object detection algorithm",
      "synonyms": [
        "YOLO",
        "you only look once",
        "YOLOv3",
        "YOLOv4",
        "YOLOv5"
      ]
    },
    "capsnet": {
      "name": "Capsule Network",
      "category": "deep_learning",
      "description": "Neural network architecture that uses capsules to better model hierarchical relationships",
      "synonyms": [
        "CapsNet",
        "capsule network",
        "capsule networks",
        "dynamic routing"
      ]
    },
    "gpt": {
      "name": "GPT",
      "category": "llms",
      "description": "Generative Pre-trained Transformer - OpenAI's large language model family",
      "synonyms": [
        "GPT",
        "gpt",
        "generative pre-trained transformer",
        "ChatGPT",
        "GPT-3",
        "GPT-4",
        "GPT-4o",
        "OpenAI GPT"
      ],
      "blacklist": [
        "glucose-6-phosphate transporter",
        "glutamic pyruvic transaminase",
        "glutathione peroxidase",
        "glycerophosphate",
        "guanosine triphosphate"
      ]
    },
    "claude": {
      "name": "Claude",
      "category": "llms",
      "description": "Anthropic's AI assistant and large language model family",
      "synonyms": [
        "Claude",
        "claude",
        "Anthropic Claude",
        "Claude-3",
        "Claude Sonnet",
        "Claude Haiku",
        "Claude Opus"
      ]
    },
    "bert": {
      "name": "BERT",
      "category": "llms",
      "description": "Bidirectional Encoder Representations from Transformers - Google's pre-trained language model",
      "synonyms": [
        "BERT",
        "bert",
        "bidirectional encoder representations",
        "BERT model",
        "Google BERT"
      ],
      "blacklist": [
        "behavioral emergency response team",
        "biomedical emergency response team",
        "blood-retinal barrier transport",
        "bronchial epithelial cell"
      ]
    },
    "gemini": {
      "name": "Gemini",
      "category": "llms",
      "description": "Google's multimodal large language model family",
      "synonyms": [
        "Gemini",
        "gemini",
        "Google Gemini",
        "Gemini Pro",
        "Gemini Ultra",
        "Gemini Nano"
      ]
    },
    "llama": {
      "name": "LLaMA",
      "category": "llms",
      "description": "Large Language Model Meta AI - Meta's open-source language model family",
      "synonyms": [
        "LLaMA",
        "llama",
        "Llama",
        "Meta LLaMA",
        "Llama-2",
        "Llama 2",
        "Llama 3",
        "Code Llama"
      ]
    },
    "qwen": {
      "name": "Qwen",
      "category": "llms",
      "description": "Alibaba's large language model series with multilingual capabilities",
      "synonyms": [
        "Qwen",
        "qwen",
        "Alibaba Qwen",
        "Qwen-7B",
        "Qwen-14B",
        "Qwen-72B",
        "Tongyi Qianwen"
      ]
    },
    "deepseek": {
      "name": "DeepSeek",
      "category": "llms",
      "description": "DeepSeek's large language model optimized for code and reasoning",
      "synonyms": [
        "DeepSeek",
        "deepseek",
        "DeepSeek Coder",
        "DeepSeek LLM",
        "DeepSeek-V2"
      ]
    },
    "mistral": {
      "name": "Mistral",
      "category": "llms",
      "description": "Mistral AI's efficient and powerful open-source language models",
      "synonyms": [
        "Mistral",
        "mistral",
        "Mistral 7B",
        "Mixtral",
        "Mistral AI",
        "Mixtral 8x7B"
      ]
    },
    "palm": {
      "name": "PaLM",
      "category": "llms",
      "description": "Pathways Language Model - Google's large-scale language model",
      "synonyms": [
        "PaLM",
        "palm",
        "Pathways Language Model",
        "PaLM-2",
        "Google PaLM"
      ]
    },
    "t5": {
      "name": "T5",
      "category": "llms",
      "description": "Text-to-Text Transfer Transformer - Google's unified text processing model",
      "synonyms": [
        "T5",
        "t5",
        "text-to-text transfer transformer",
        "Google T5"
      ],
      "blacklist": [
        "T5 vertebra",
        "T5 spinal",
        "fifth thoracic vertebra",
        "thoracic vertebra 5",
        "T5 nerve root",
        "T5 dermatome"
      ]
    },
    "roberta": {
      "name": "RoBERTa",
      "category": "llms",
      "description": "Robustly Optimized BERT Pretraining Approach - Meta's improved BERT variant",
      "synonyms": [
        "RoBERTa",
        "roberta",
        "robustly optimized BERT",
        "Meta RoBERTa"
      ]
    },
    "phi": {
      "name": "Phi",
      "category": "llms",
      "description": "Microsoft's small language model series optimized for efficiency",
      "synonyms": [
        "Microsoft Phi",
        "Microsoft Phi-3",
        "Microsoft Phi-2", 
        "Microsoft Phi-1",
        "Phi language model",
        "Phi LLM",
        "Phi small language model"
      ],
      "blacklist": [
        "phi angle",
        "phi coefficient",
        "phi correlation",
        "dihedral angle",
        "phi psi angles",
        "ramachandran plot",
        "protein phi",
        "phi torsion",
        "golden ratio phi",
        "phi statistic",
        "phi phenomenon",
        "phi value analysis",
        "protected health information",
        "personal health information",
        "phosphatidylinositol",
        "bacteriophage phi",
        "phage phi",
        "phi bacteriophage",
        "phi X174",
        "phi 6",
        "phi 29",
        "phi92",
        "magnetic flux phi",
        "flux phi",
        "phi magnetic",
        "volumetric flux",
        "flow rate phi",
        "phi value",
        "phi values",
        "phi analysis",
        "phi-value analysis",
        "protein folding phi",
        "transition state phi",
        "nucleation condensation phi",
        "pharmacologic MRI phi",
        "phMRI",
        "DICOM phi",
        "medical imaging phi",
        "phi function",
        "phi distribution",
        "phi parameter",
        "phi variable",
        "phi measurement",
        "phi calculation"
      ]
    },
    "falcon": {
      "name": "Falcon",
      "category": "llms",
      "description": "Technology Innovation Institute's open-source large language model",
      "synonyms": [
        "Falcon",
        "falcon",
        "Falcon-7B",
        "Falcon-40B",
        "Falcon-180B",
        "TII Falcon"
      ]
    }
  }
}