AleksanderObuchowski's picture
Initial commit for Hugging Face Spaces
e4f1db2
raw
history blame
36.8 kB
import React from 'react';
import { BookOpen, Code, Database, Brain, Stethoscope, Shield, Wrench, Users, TrendingUp, Award, Target, Crown, ExternalLink, Clock, Star, Users2, Globe, Video, FileText, Laptop } from 'lucide-react';
interface Course {
title: string;
platform: string;
url: string;
duration: string;
level: 'Beginner' | 'Intermediate' | 'Advanced';
rating?: number;
}
interface Book {
title: string;
author: string;
url: string;
description: string;
}
interface PhaseProps {
phaseNumber: number;
title: string;
description: string;
items: {
title: string;
objective: string;
icon: React.ReactNode;
courses: Course[];
books?: Book[];
topics: string[];
practicalProjects?: string[];
estimatedTime: string;
}[];
icon: React.ReactNode;
color: string;
isLast?: boolean;
}
const Phase: React.FC<PhaseProps> = ({ phaseNumber, title, description, items, icon, color, isLast }) => {
return (
<div className="relative">
{/* Timeline line */}
{!isLast && (
<div className="absolute left-8 top-20 w-0.5 h-full bg-gray-300 z-0"></div>
)}
<div className="relative z-10 flex items-start mb-16">
{/* Phase circle indicator */}
<div className={`flex-shrink-0 w-16 h-16 rounded-full ${color} flex items-center justify-center mr-8 shadow-lg`}>
<div className="text-white font-bold text-lg">{phaseNumber}</div>
</div>
{/* Phase content */}
<div className="flex-grow">
<div className="mb-6">
<h2 className="text-2xl font-bold text-gray-900 mb-2">{title}</h2>
<p className="text-gray-600 text-lg">{description}</p>
</div>
<div className="space-y-8">
{items.map((item, index) => (
<div key={index} className="bg-gradient-to-br from-white to-gray-50 rounded-xl shadow-lg p-8 border border-gray-200 hover:shadow-2xl hover:scale-[1.02] transition-all duration-300 ml-8 group">
{/* Header with icon and title */}
<div className="flex items-center mb-6">
<div className="bg-gradient-to-br from-blue-500 to-purple-600 p-3 rounded-lg mr-4 group-hover:scale-110 transition-transform duration-300">
{item.icon}
</div>
<div className="flex-grow">
<h3 className="text-xl font-bold text-gray-900 mb-1">{item.title}</h3>
<div className="flex items-center text-sm text-gray-500">
<Clock className="h-4 w-4 mr-1" />
<span>Estimated time: {item.estimatedTime}</span>
</div>
</div>
</div>
{/* Objective */}
<div className="mb-6 p-4 bg-blue-50 rounded-lg border-l-4 border-blue-500">
<h4 className="text-sm font-semibold text-blue-900 mb-2 flex items-center">
<Target className="h-4 w-4 mr-2" />
Objective
</h4>
<p className="text-sm text-blue-800">{item.objective}</p>
</div>
{/* Courses */}
<div className="mb-6">
<h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center">
<Video className="h-4 w-4 mr-2" />
Recommended Courses
</h4>
<div className="grid gap-3 sm:grid-cols-2">
{item.courses.map((course, courseIndex) => (
<a
key={courseIndex}
href={course.url}
target="_blank"
rel="noopener noreferrer"
className="block p-4 bg-white rounded-lg border border-gray-200 hover:border-blue-300 hover:shadow-md transition-all duration-200 group/course"
>
<div className="flex items-start justify-between mb-2">
<h5 className="font-medium text-gray-900 text-sm group-hover/course:text-blue-600 transition-colors">{course.title}</h5>
<ExternalLink className="h-3 w-3 text-gray-400 group-hover/course:text-blue-500 flex-shrink-0 ml-2" />
</div>
<div className="flex items-center justify-between text-xs text-gray-500">
<span className="bg-gray-100 px-2 py-1 rounded">{course.platform}</span>
<div className="flex items-center space-x-2">
<span className={`px-2 py-1 rounded text-xs font-medium ${
course.level === 'Beginner' ? 'bg-green-100 text-green-700' :
course.level === 'Intermediate' ? 'bg-yellow-100 text-yellow-700' :
'bg-red-100 text-red-700'
}`}>
{course.level}
</span>
<span>{course.duration}</span>
{course.rating && (
<div className="flex items-center">
<Star className="h-3 w-3 text-yellow-400 fill-current" />
<span className="ml-1">{course.rating}</span>
</div>
)}
</div>
</div>
</a>
))}
</div>
</div>
{/* Books */}
{item.books && item.books.length > 0 && (
<div className="mb-6">
<h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center">
<BookOpen className="h-4 w-4 mr-2" />
Essential Reading
</h4>
<div className="space-y-3">
{item.books.map((book, bookIndex) => (
<a
key={bookIndex}
href={book.url}
target="_blank"
rel="noopener noreferrer"
className="block p-4 bg-orange-50 rounded-lg border border-orange-200 hover:border-orange-300 hover:shadow-md transition-all duration-200 group/book"
>
<div className="flex items-start justify-between mb-2">
<div>
<h5 className="font-medium text-gray-900 text-sm group-hover/book:text-orange-600 transition-colors">{book.title}</h5>
<p className="text-xs text-gray-600">by {book.author}</p>
</div>
<ExternalLink className="h-3 w-3 text-gray-400 group-hover/book:text-orange-500 flex-shrink-0 ml-2" />
</div>
<p className="text-xs text-gray-600">{book.description}</p>
</a>
))}
</div>
</div>
)}
{/* Practical Projects */}
{item.practicalProjects && item.practicalProjects.length > 0 && (
<div className="mb-6">
<h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center">
<Laptop className="h-4 w-4 mr-2" />
Hands-on Projects
</h4>
<div className="bg-green-50 rounded-lg p-4">
<ul className="space-y-2">
{item.practicalProjects.map((project, projectIndex) => (
<li key={projectIndex} className="flex items-start text-sm text-green-800">
<div className="w-2 h-2 bg-green-500 rounded-full mt-2 mr-3 flex-shrink-0"></div>
{project}
</li>
))}
</ul>
</div>
</div>
)}
{/* Topics */}
<div>
<h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center">
<FileText className="h-4 w-4 mr-2" />
Key Topics to Master
</h4>
<div className="flex flex-wrap gap-2">
{item.topics.map((topic, topicIndex) => (
<span
key={topicIndex}
className="px-3 py-1 bg-purple-100 text-purple-700 rounded-full text-xs font-medium hover:bg-purple-200 transition-colors"
>
{topic}
</span>
))}
</div>
</div>
</div>
))}
</div>
</div>
</div>
</div>
);
};
const Roadmap: React.FC = () => {
const phases = [
{
phaseNumber: 1,
title: "Foundational Knowledge",
description: "Build essential understanding of AI concepts and programming skills",
icon: <BookOpen className="h-8 w-8 text-white" />,
color: "bg-blue-500",
items: [
{
title: "Introduction to AI",
objective: "Understand the basics of AI, its history, and key concepts.",
icon: <Brain className="h-6 w-6 text-white" />,
estimatedTime: "4-6 weeks",
courses: [
{
title: "AI For Everyone",
platform: "Coursera",
url: "https://www.coursera.org/learn/ai-for-everyone",
duration: "4 weeks",
level: "Beginner",
rating: 4.8
},
{
title: "Introduction to Artificial Intelligence",
platform: "edX MIT",
url: "https://www.edx.org/course/introduction-to-artificial-intelligence-ai",
duration: "5 weeks",
level: "Beginner",
rating: 4.6
},
{
title: "AI Fundamentals",
platform: "IBM Cognitive Class",
url: "https://cognitiveclass.ai/courses/artificial-intelligence-fundamentals",
duration: "3 weeks",
level: "Beginner"
}
],
books: [
{
title: "Artificial Intelligence: A Guide for Thinking Humans",
author: "Melanie Mitchell",
url: "https://www.amazon.com/Artificial-Intelligence-Guide-Thinking-Humans/dp/0374257833",
description: "An accessible introduction to AI concepts without technical jargon"
},
{
title: "Human Compatible: Artificial Intelligence and the Problem of Control",
author: "Stuart Russell",
url: "https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem/dp/0525558616",
description: "Explores the future of AI and its implications for humanity"
}
],
topics: ["AI vs. ML vs. Deep Learning", "History of AI", "Types of AI", "AI Ethics", "Current Applications", "Future Trends"]
},
{
title: "Basic Programming Skills",
objective: "Gain proficiency in Python, the most commonly used programming language in AI.",
icon: <Code className="h-6 w-6 text-white" />,
estimatedTime: "8-12 weeks",
courses: [
{
title: "Python for Everybody Specialization",
platform: "Coursera",
url: "https://www.coursera.org/specializations/python",
duration: "8 months",
level: "Beginner",
rating: 4.8
},
{
title: "Learn Python 3",
platform: "Codecademy",
url: "https://www.codecademy.com/learn/learn-python-3",
duration: "25 hours",
level: "Beginner",
rating: 4.7
},
{
title: "Python Programming MOOC",
platform: "University of Helsinki",
url: "https://programming-23.mooc.fi/",
duration: "14 weeks",
level: "Beginner"
},
{
title: "CS50's Introduction to Programming with Python",
platform: "Harvard edX",
url: "https://www.edx.org/course/cs50s-introduction-to-programming-with-python",
duration: "10 weeks",
level: "Beginner",
rating: 4.9
}
],
books: [
{
title: "Python Crash Course",
author: "Eric Matthes",
url: "https://www.amazon.com/Python-Crash-Course-Hands-Project-Based/dp/1593279280",
description: "A hands-on, project-based introduction to programming"
}
],
practicalProjects: [
"Build a simple calculator application",
"Create a weather data scraper using APIs",
"Develop a basic web scraper with BeautifulSoup",
"Make a simple data visualization with matplotlib"
],
topics: ["Python Syntax", "Data Structures", "Functions & Classes", "NumPy", "Pandas", "File Handling", "Error Handling", "Libraries & Modules"]
},
{
title: "Data Literacy",
objective: "Learn about data types, collection, preprocessing, and analysis.",
icon: <Database className="h-6 w-6 text-white" />,
estimatedTime: "6-8 weeks",
courses: [
{
title: "Data Science Fundamentals",
platform: "DataCamp",
url: "https://www.datacamp.com/tracks/data-scientist-with-python",
duration: "87 hours",
level: "Beginner",
rating: 4.6
},
{
title: "Introduction to Data Science in Python",
platform: "Coursera (University of Michigan)",
url: "https://www.coursera.org/learn/python-data-analysis",
duration: "4 weeks",
level: "Intermediate",
rating: 4.5
},
{
title: "Data Analysis with Python",
platform: "freeCodeCamp",
url: "https://www.freecodecamp.org/learn/data-analysis-with-python/",
duration: "300 hours",
level: "Intermediate"
}
],
books: [
{
title: "Python for Data Analysis",
author: "Wes McKinney",
url: "https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662",
description: "Essential guide to data manipulation and analysis with pandas"
}
],
practicalProjects: [
"Analyze a real dataset from Kaggle",
"Create comprehensive data visualizations",
"Build an interactive dashboard with Streamlit",
"Perform exploratory data analysis on healthcare data"
],
topics: ["Data Types", "Data Cleaning", "Exploratory Data Analysis", "Statistical Analysis", "Matplotlib", "Seaborn", "Plotly", "Data Ethics"]
}
]
},
{
phaseNumber: 2,
title: "Core AI Concepts",
description: "Master fundamental machine learning and deep learning techniques",
icon: <Brain className="h-8 w-8 text-white" />,
color: "bg-purple-500",
items: [
{
title: "Machine Learning Basics",
objective: "Study the fundamentals of machine learning algorithms and techniques.",
icon: <TrendingUp className="h-6 w-6 text-white" />,
estimatedTime: "10-12 weeks",
courses: [
{
title: "Machine Learning Course",
platform: "Coursera (Stanford)",
url: "https://www.coursera.org/learn/machine-learning",
duration: "11 weeks",
level: "Intermediate",
rating: 4.9
},
{
title: "Scikit-Learn Course",
platform: "DataCamp",
url: "https://www.datacamp.com/courses/supervised-learning-with-scikit-learn",
duration: "4 hours",
level: "Intermediate",
rating: 4.7
},
{
title: "Machine Learning A-Z",
platform: "Udemy",
url: "https://www.udemy.com/course/machinelearning/",
duration: "44 hours",
level: "Beginner",
rating: 4.5
},
{
title: "Introduction to Machine Learning",
platform: "MIT OpenCourseWare",
url: "https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/",
duration: "12 weeks",
level: "Intermediate"
}
],
books: [
{
title: "Hands-On Machine Learning",
author: "Aurélien Géron",
url: "https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646",
description: "Practical approach to ML with Python, scikit-learn, and TensorFlow"
},
{
title: "Pattern Recognition and Machine Learning",
author: "Christopher Bishop",
url: "https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738",
description: "Comprehensive theoretical foundation of machine learning"
}
],
practicalProjects: [
"Build a house price prediction model",
"Create a customer segmentation analysis",
"Develop a recommendation system",
"Implement classification for medical diagnosis"
],
topics: ["Supervised Learning", "Unsupervised Learning", "Regression", "Classification", "Clustering", "Model Evaluation", "Cross-Validation", "Feature Engineering"]
},
{
title: "Deep Learning",
objective: "Master neural networks and their applications in various domains.",
icon: <Brain className="h-6 w-6 text-white" />,
estimatedTime: "12-16 weeks",
courses: [
{
title: "Deep Learning Specialization",
platform: "Coursera (deeplearning.ai)",
url: "https://www.coursera.org/specializations/deep-learning",
duration: "4 months",
level: "Intermediate",
rating: 4.8
},
{
title: "CS231n: Convolutional Neural Networks",
platform: "Stanford Online",
url: "http://cs231n.stanford.edu/",
duration: "16 weeks",
level: "Advanced"
},
{
title: "Fast.ai Practical Deep Learning",
platform: "fast.ai",
url: "https://course.fast.ai/",
duration: "7 weeks",
level: "Intermediate",
rating: 4.9
},
{
title: "PyTorch for Deep Learning",
platform: "Udacity",
url: "https://www.udacity.com/course/deep-learning-pytorch--ud188",
duration: "2 months",
level: "Intermediate"
}
],
books: [
{
title: "Deep Learning",
author: "Ian Goodfellow, Yoshua Bengio, Aaron Courville",
url: "https://www.amazon.com/Deep-Learning-Ian-Goodfellow/dp/0262035618",
description: "The definitive textbook on deep learning theory and practice"
}
],
practicalProjects: [
"Build an image classifier for medical images",
"Create a neural network for time series forecasting",
"Develop a generative model for synthetic data",
"Implement transfer learning for medical imaging"
],
topics: ["Neural Networks", "CNNs", "RNNs", "LSTMs", "GANs", "Transfer Learning", "Optimization", "Regularization", "TensorFlow", "PyTorch"]
},
{
title: "Natural Language Processing",
objective: "Learn to process and analyze textual data, especially medical literature.",
icon: <FileText className="h-6 w-6 text-white" />,
estimatedTime: "8-10 weeks",
courses: [
{
title: "Natural Language Processing Specialization",
platform: "Coursera (deeplearning.ai)",
url: "https://www.coursera.org/specializations/natural-language-processing",
duration: "4 months",
level: "Intermediate",
rating: 4.6
},
{
title: "CS224n: Natural Language Processing with Deep Learning",
platform: "Stanford Online",
url: "http://web.stanford.edu/class/cs224n/",
duration: "10 weeks",
level: "Advanced"
},
{
title: "NLP with Python",
platform: "DataCamp",
url: "https://www.datacamp.com/tracks/natural-language-processing-in-python",
duration: "17 hours",
level: "Intermediate",
rating: 4.5
}
],
books: [
{
title: "Natural Language Processing with Python",
author: "Steven Bird, Ewan Klein, Edward Loper",
url: "https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495",
description: "Practical guide to NLP using NLTK and Python"
}
],
practicalProjects: [
"Build a medical text classifier",
"Create a clinical notes summarizer",
"Develop sentiment analysis for patient feedback",
"Implement named entity recognition for medical terms"
],
topics: ["Text Preprocessing", "Tokenization", "Word Embeddings", "Transformers", "BERT", "Sentiment Analysis", "Named Entity Recognition", "Language Models"]
}
]
},
{
phaseNumber: 3,
title: "AI in Healthcare",
description: "Apply AI knowledge specifically to healthcare and medical applications",
icon: <Stethoscope className="h-8 w-8 text-white" />,
color: "bg-green-500",
items: [
{
title: "Healthcare Data Standards",
objective: "Master healthcare data formats and interoperability standards.",
icon: <Database className="h-6 w-6 text-white" />,
estimatedTime: "6-8 weeks",
courses: [
{
title: "Health Informatics on FHIR",
platform: "Coursera (UC Davis)",
url: "https://www.coursera.org/learn/fhir",
duration: "4 weeks",
level: "Intermediate",
rating: 4.5
},
{
title: "Healthcare Data Models and APIs",
platform: "edX",
url: "https://www.edx.org/course/healthcare-data-models-and-apis",
duration: "6 weeks",
level: "Intermediate"
},
{
title: "DICOM and Medical Imaging",
platform: "RSNA",
url: "https://www.rsna.org/education",
duration: "Self-paced",
level: "Intermediate"
}
],
books: [
{
title: "Healthcare Information Systems",
author: "Marion J. Ball",
url: "https://www.amazon.com/Healthcare-Information-Systems-Marion-Ball/dp/0387403299",
description: "Comprehensive guide to healthcare IT systems and standards"
}
],
practicalProjects: [
"Parse and analyze FHIR resources",
"Build a DICOM image viewer",
"Create an HL7 message processor",
"Develop healthcare data pipeline"
],
topics: ["HL7", "FHIR", "DICOM", "EHR Systems", "Healthcare APIs", "Data Interoperability", "Medical Coding", "Healthcare Databases"]
},
{
title: "AI Applications in Medicine",
objective: "Study and implement AI solutions for specific medical domains.",
icon: <Stethoscope className="h-6 w-6 text-white" />,
estimatedTime: "10-12 weeks",
courses: [
{
title: "AI for Medical Diagnosis",
platform: "Coursera (deeplearning.ai)",
url: "https://www.coursera.org/learn/ai-for-medical-diagnosis",
duration: "3 weeks",
level: "Intermediate",
rating: 4.7
},
{
title: "Medical Image Analysis",
platform: "MIT OpenCourseWare",
url: "https://ocw.mit.edu/courses/health-sciences-and-technology/",
duration: "12 weeks",
level: "Advanced"
},
{
title: "Clinical Data Science",
platform: "Harvard T.H. Chan School",
url: "https://www.hsph.harvard.edu/biostatistics/",
duration: "8 weeks",
level: "Advanced"
}
],
books: [
{
title: "Artificial Intelligence in Medicine",
author: "Peter Lucas, Arie Hasman",
url: "https://www.amazon.com/Artificial-Intelligence-Medicine-Peter-Lucas/dp/0444502753",
description: "Comprehensive overview of AI applications in healthcare"
}
],
practicalProjects: [
"Build a medical image classification system",
"Create a clinical decision support tool",
"Develop a drug discovery pipeline",
"Implement predictive analytics for patient outcomes"
],
topics: ["Medical Imaging AI", "Clinical Decision Support", "Genomics", "Drug Discovery", "Predictive Analytics", "Personalized Medicine", "Telemedicine", "Robotic Surgery"]
},
{
title: "Healthcare AI Ethics & Regulation",
objective: "Navigate ethical and regulatory challenges in healthcare AI.",
icon: <Shield className="h-6 w-6 text-white" />,
estimatedTime: "4-6 weeks",
courses: [
{
title: "AI in Healthcare Ethics",
platform: "Stanford Medicine",
url: "https://med.stanford.edu/aiethics.html",
duration: "4 weeks",
level: "Intermediate"
},
{
title: "FDA Regulation of AI/ML",
platform: "FDA",
url: "https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device",
duration: "Self-paced",
level: "Intermediate"
}
],
books: [
{
title: "The Ethical Algorithm",
author: "Michael Kearns, Aaron Roth",
url: "https://www.amazon.com/Ethical-Algorithm-Science-Socially-Design/dp/0190948205",
description: "Framework for designing ethical AI systems"
}
],
practicalProjects: [
"Conduct bias analysis in medical AI models",
"Design privacy-preserving healthcare AI",
"Create AI governance framework",
"Develop explainable AI for medical decisions"
],
topics: ["AI Ethics", "HIPAA Compliance", "FDA Regulations", "Bias Detection", "Explainable AI", "Privacy Protection", "Algorithmic Fairness", "Regulatory Compliance"]
}
]
},
{
phaseNumber: 4,
title: "Practical Experience",
description: "Gain hands-on experience with real-world AI projects",
icon: <Wrench className="h-8 w-8 text-white" />,
color: "bg-orange-500",
items: [
{
title: "Healthcare AI Projects",
objective: "Build real-world AI solutions for healthcare challenges.",
icon: <Laptop className="h-6 w-6 text-white" />,
estimatedTime: "12-16 weeks",
courses: [
{
title: "Applied Data Science Capstone",
platform: "Coursera (IBM)",
url: "https://www.coursera.org/learn/applied-data-science-capstone",
duration: "6 weeks",
level: "Advanced",
rating: 4.4
},
{
title: "Kaggle Learn",
platform: "Kaggle",
url: "https://www.kaggle.com/learn",
duration: "Self-paced",
level: "Intermediate"
}
],
practicalProjects: [
"Medical image analysis with CNNs",
"Clinical trial outcome prediction",
"Drug-drug interaction detection",
"Electronic health record analysis",
"Medical chatbot development"
],
topics: ["Project Management", "Version Control", "Model Deployment", "Cloud Platforms", "API Development", "Database Management", "Testing", "Documentation"]
},
{
title: "Professional Development",
objective: "Build network and stay current with healthcare AI trends.",
icon: <Users2 className="h-6 w-6 text-white" />,
estimatedTime: "Ongoing",
courses: [
{
title: "Healthcare AI Leadership",
platform: "MIT xPRO",
url: "https://learn-xpro.mit.edu/",
duration: "8 weeks",
level: "Advanced"
}
],
practicalProjects: [
"Join AMIA and attend conferences",
"Contribute to open-source healthcare AI projects",
"Publish research papers",
"Present at healthcare AI meetups"
],
topics: ["Professional Networks", "Research Publications", "Conference Presentations", "Open Source Contribution", "Mentorship", "Industry Trends"]
}
]
},
{
phaseNumber: 5,
title: "Advanced Topics and Specialization",
description: "Explore cutting-edge research and develop specialized expertise",
icon: <TrendingUp className="h-8 w-8 text-white" />,
color: "bg-red-500",
items: [
{
title: "Advanced AI Research",
objective: "Master cutting-edge AI techniques and research methodologies.",
icon: <Award className="h-6 w-6 text-white" />,
estimatedTime: "16-20 weeks",
courses: [
{
title: "Reinforcement Learning Specialization",
platform: "Coursera (University of Alberta)",
url: "https://www.coursera.org/specializations/reinforcement-learning",
duration: "4 months",
level: "Advanced",
rating: 4.7
},
{
title: "Explainable AI",
platform: "MIT xPRO",
url: "https://learn-xpro.mit.edu/artificial-intelligence",
duration: "8 weeks",
level: "Advanced"
}
],
topics: ["Reinforcement Learning", "GANs", "Explainable AI", "AutoML", "Federated Learning", "Graph Neural Networks", "Meta-Learning", "Research Methods"]
},
{
title: "Healthcare Specialization",
objective: "Develop deep expertise in a specific healthcare AI domain.",
icon: <Target className="h-6 w-6 text-white" />,
estimatedTime: "6+ months",
courses: [
{
title: "Genomics Data Science",
platform: "Coursera (Johns Hopkins)",
url: "https://www.coursera.org/specializations/genomic-data-science",
duration: "6 months",
level: "Advanced",
rating: 4.5
}
],
topics: ["Medical Imaging", "Genomics", "Clinical Decision Support", "Drug Discovery", "Precision Medicine", "Digital Therapeutics", "Wearables", "Telemedicine"]
}
]
},
{
phaseNumber: 6,
title: "Implementation and Leadership",
description: "Lead AI initiatives and drive adoption in healthcare organizations",
icon: <Crown className="h-8 w-8 text-white" />,
color: "bg-indigo-500",
items: [
{
title: "Clinical Implementation",
objective: "Lead successful AI integration in healthcare organizations.",
icon: <Wrench className="h-6 w-6 text-white" />,
estimatedTime: "6+ months",
courses: [
{
title: "Healthcare Innovation and Entrepreneurship",
platform: "Harvard Business School Online",
url: "https://online.hbs.edu/courses/healthcare-innovation/",
duration: "8 weeks",
level: "Advanced"
}
],
topics: ["Change Management", "Workflow Integration", "ROI Analysis", "Quality Assurance", "Risk Management", "Stakeholder Engagement", "Pilot Studies", "Scale-up Strategies"]
},
{
title: "AI Leadership & Strategy",
objective: "Drive organizational AI strategy and policy development.",
icon: <Crown className="h-6 w-6 text-white" />,
estimatedTime: "Ongoing",
courses: [
{
title: "AI Strategy and Leadership",
platform: "MIT Sloan",
url: "https://executive.mit.edu/openenrollment/program/artificial_intelligence_strategy_and_leadership/",
duration: "3 days",
level: "Executive"
}
],
topics: ["Strategic Planning", "Policy Development", "Team Leadership", "Budget Management", "Regulatory Navigation", "Public Speaking", "Grant Writing", "Board Presentations"]
}
]
}
];
return (
<div className="max-w-7xl mx-auto">
<div className="text-center mb-12">
<h1 className="text-4xl font-bold text-gray-900 mb-4">AI Learning Roadmap</h1>
<p className="text-xl text-gray-600 max-w-3xl mx-auto">
A comprehensive guide to mastering artificial intelligence with a focus on healthcare applications.
Follow this structured path from foundational concepts to advanced implementation and leadership.
</p>
</div>
<div className="mb-8">
<div className="bg-blue-50 border border-blue-200 rounded-lg p-6">
<div className="flex items-center mb-3">
<Target className="h-6 w-6 text-blue-600 mr-2" />
<h3 className="text-lg font-semibold text-blue-900">Learning Journey Overview</h3>
</div>
<p className="text-blue-800">
This roadmap is designed as a progressive learning journey spanning 6 phases. Each phase builds upon the previous one,
taking you from AI fundamentals to becoming a leader in healthcare AI implementation. Expect to spend 6-12 months on each phase,
depending on your background and time commitment.
</p>
</div>
</div>
<div className="relative">
{phases.map((phase, index) => (
<Phase key={phase.phaseNumber} {...phase} isLast={index === phases.length - 1} />
))}
</div>
<div className="mt-12 text-center">
<div className="bg-gradient-to-r from-gray-50 to-gray-100 rounded-lg p-8">
<Award className="h-12 w-12 text-gray-600 mx-auto mb-4" />
<h3 className="text-2xl font-bold text-gray-900 mb-4">Ready to Begin Your Journey?</h3>
<p className="text-gray-700 max-w-2xl mx-auto">
Remember, this roadmap is a guide, not a rigid prescription. Adapt it to your specific interests,
background, and career goals. The key is consistent learning and practical application of knowledge.
</p>
</div>
</div>
</div>
);
};
export default Roadmap;