Spaces:
Running
Running
{ | |
"algorithms": { | |
"svm": { | |
"name": "Support Vector Machine", | |
"category": "classical_ml", | |
"description": "A supervised learning algorithm that finds optimal hyperplanes for classification and regression tasks", | |
"synonyms": [ | |
"support vector machine", | |
"SVM", | |
"support vector classifier", | |
"support vector regression", | |
"SVR" | |
], | |
"blacklist": [ | |
"stroke volume monitoring", | |
"severe viral meningitis", | |
"syncope vasovagal mechanisms", | |
"superior vena cava", | |
"small vessel disease" | |
] | |
}, | |
"decision_tree": { | |
"name": "Decision Tree", | |
"category": "classical_ml", | |
"description": "A tree-like model that makes decisions by splitting data based on feature values", | |
"synonyms": [ | |
"decision tree", | |
"decision trees", | |
"DT", | |
"CART", | |
"classification tree", | |
"regression tree" | |
] | |
}, | |
"random_forest": { | |
"name": "Random Forest", | |
"category": "classical_ml", | |
"description": "An ensemble method that combines multiple decision trees for improved accuracy", | |
"synonyms": [ | |
"random forest", | |
"RF", | |
"random forests", | |
"forest classifier" | |
], | |
"blacklist": [ | |
"radiofrequency", | |
"rheumatoid factor", | |
"risk factor", | |
"renal failure", | |
"respiratory failure", | |
"reticular formation" | |
] | |
}, | |
"xgboost": { | |
"name": "XGBoost", | |
"category": "classical_ml", | |
"description": "Extreme Gradient Boosting - an optimized gradient boosting framework", | |
"synonyms": [ | |
"xgboost", | |
"XGBoost", | |
"extreme gradient boosting", | |
"XGB" | |
] | |
}, | |
"logistic_regression": { | |
"name": "Logistic Regression", | |
"category": "classical_ml", | |
"description": "A linear model for binary and multiclass classification problems", | |
"synonyms": [ | |
"logistic regression", | |
"logit", | |
"logistic model", | |
"LR" | |
] | |
}, | |
"naive_bayes": { | |
"name": "Naive Bayes", | |
"category": "classical_ml", | |
"description": "A probabilistic classifier based on Bayes' theorem with independence assumptions", | |
"synonyms": [ | |
"naive bayes", | |
"Naive Bayes", | |
"NB", | |
"Bayes classifier" | |
] | |
}, | |
"knn": { | |
"name": "K-Nearest Neighbors", | |
"category": "classical_ml", | |
"description": "A non-parametric method that classifies data points based on the class of their nearest neighbors", | |
"synonyms": [ | |
"k-nearest neighbors", | |
"KNN", | |
"k-NN", | |
"nearest neighbor", | |
"k nearest neighbour" | |
] | |
}, | |
"kmeans": { | |
"name": "K-Means Clustering", | |
"category": "classical_ml", | |
"description": "An unsupervised clustering algorithm that partitions data into k clusters", | |
"synonyms": [ | |
"k-means", | |
"K-means", | |
"kmeans", | |
"k-means clustering", | |
"k means" | |
] | |
}, | |
"gradient_boosting": { | |
"name": "Gradient Boosting", | |
"category": "classical_ml", | |
"description": "An ensemble method that builds models sequentially to correct errors of previous models", | |
"synonyms": [ | |
"gradient boosting", | |
"GB", | |
"GBM", | |
"gradient boosted trees", | |
"gradient boosting machine" | |
] | |
}, | |
"ada_boost": { | |
"name": "AdaBoost", | |
"category": "classical_ml", | |
"description": "Adaptive Boosting algorithm that combines weak learners into a strong classifier", | |
"synonyms": [ | |
"AdaBoost", | |
"ada boost", | |
"adaptive boosting", | |
"adaboost" | |
] | |
}, | |
"pca": { | |
"name": "Principal Component Analysis", | |
"category": "classical_ml", | |
"description": "A dimensionality reduction technique that finds principal components of data variance", | |
"synonyms": [ | |
"PCA", | |
"principal component analysis", | |
"principal components" | |
], | |
"blacklist": [ | |
"posterior cerebral artery", | |
"prostate cancer antigen", | |
"patient-controlled analgesia", | |
"percutaneous coronary angioplasty", | |
"primary care physician", | |
"polycystic ovary syndrome" | |
] | |
}, | |
"linear_regression": { | |
"name": "Linear Regression", | |
"category": "classical_ml", | |
"description": "A linear approach to modeling the relationship between variables", | |
"synonyms": [ | |
"linear regression", | |
"ordinary least squares", | |
"OLS", | |
"linear model" | |
] | |
}, | |
"cnn": { | |
"name": "Convolutional Neural Network", | |
"category": "deep_learning", | |
"description": "Deep learning architecture specialized for processing grid-like data such as images", | |
"synonyms": [ | |
"convolutional neural network", | |
"CNN", | |
"ConvNet", | |
"convolutional network", | |
"deep convolutional", | |
"conv neural network", | |
"convolution neural network" | |
], | |
"blacklist": [ | |
"cranial nerve nuclei", | |
"central nervous system", | |
"chronic kidney disease", | |
"clinical nurse navigator", | |
"calcineurin inhibitor" | |
] | |
}, | |
"lstm": { | |
"name": "Long Short-Term Memory", | |
"category": "deep_learning", | |
"description": "A type of recurrent neural network capable of learning long-term dependencies", | |
"synonyms": [ | |
"LSTM", | |
"long short-term memory", | |
"long short term memory", | |
"LSTM network" | |
] | |
}, | |
"transformer": { | |
"name": "Transformer", | |
"category": "deep_learning", | |
"description": "Attention-based neural network architecture for sequence-to-sequence tasks", | |
"synonyms": [ | |
"transformer", | |
"transformers", | |
"transformer model", | |
"transformer architecture", | |
"self-attention" | |
] | |
}, | |
"resnet": { | |
"name": "ResNet", | |
"category": "deep_learning", | |
"description": "Residual Neural Network - a deep CNN architecture with skip connections", | |
"synonyms": [ | |
"ResNet", | |
"resnet", | |
"residual network", | |
"residual neural network" | |
] | |
}, | |
"unet": { | |
"name": "U-Net", | |
"category": "deep_learning", | |
"description": "A CNN architecture for biomedical image segmentation with encoder-decoder structure", | |
"synonyms": [ | |
"U-Net", | |
"UNet", | |
"u-net", | |
"unet" | |
] | |
}, | |
"gan": { | |
"name": "Generative Adversarial Network", | |
"category": "deep_learning", | |
"description": "A framework where two neural networks compete to generate realistic data", | |
"synonyms": [ | |
"generative adversarial network", | |
"generative adversarial networks", | |
"GANs", | |
"GAN model", | |
"GAN network", | |
"adversarial network", | |
"adversarial training" | |
], | |
"blacklist": [ | |
"giant axonal neuropathy", | |
"Giant Axonal Neuropathy", | |
"GAN neuropathy", | |
"axonal neuropathy", | |
"ganglion", | |
"ganglia", | |
"ganglioside", | |
"gangliosides", | |
"ganglionic", | |
"gangrene", | |
"gangrenous", | |
"Ganoderma", | |
"ganoderic", | |
"ganciclovir", | |
"gastric antral nodularity", | |
"gonadotropin-releasing hormone antagonist", | |
"glucosamine", | |
"galactosamine", | |
"N-acetylgalactosamine", | |
"GalNAc" | |
] | |
}, | |
"autoencoder": { | |
"name": "Autoencoder", | |
"category": "deep_learning", | |
"description": "Neural networks that learn efficient representations by encoding and decoding data", | |
"synonyms": [ | |
"autoencoder", | |
"auto-encoder", | |
"autoencoders", | |
"variational autoencoder", | |
"VAE" | |
] | |
}, | |
"vgg": { | |
"name": "VGG", | |
"category": "deep_learning", | |
"description": "Very Deep Convolutional Networks - a CNN architecture with small convolution filters", | |
"synonyms": [ | |
"VGG", | |
"VGG-16", | |
"VGG-19", | |
"VGGNet" | |
] | |
}, | |
"rnn": { | |
"name": "Recurrent Neural Network", | |
"category": "deep_learning", | |
"description": "Neural networks with memory that can process sequences of data", | |
"synonyms": [ | |
"RNN", | |
"recurrent neural network", | |
"recurrent network", | |
"RNNs" | |
], | |
"blacklist": [ | |
"ribonuclease", | |
"registered nurse navigator", | |
"reactive nitrogen species" | |
] | |
}, | |
"gru": { | |
"name": "Gated Recurrent Unit", | |
"category": "deep_learning", | |
"description": "Simplified variant of LSTM with fewer parameters and faster training", | |
"synonyms": [ | |
"GRU", | |
"gated recurrent unit", | |
"gated recurrent units", | |
"GRUs" | |
] | |
}, | |
"yolo": { | |
"name": "YOLO", | |
"category": "deep_learning", | |
"description": "You Only Look Once - real-time object detection algorithm", | |
"synonyms": [ | |
"YOLO", | |
"you only look once", | |
"YOLOv3", | |
"YOLOv4", | |
"YOLOv5" | |
] | |
}, | |
"capsnet": { | |
"name": "Capsule Network", | |
"category": "deep_learning", | |
"description": "Neural network architecture that uses capsules to better model hierarchical relationships", | |
"synonyms": [ | |
"CapsNet", | |
"capsule network", | |
"capsule networks", | |
"dynamic routing" | |
] | |
}, | |
"gpt": { | |
"name": "GPT", | |
"category": "llms", | |
"description": "Generative Pre-trained Transformer - OpenAI's large language model family", | |
"synonyms": [ | |
"GPT", | |
"gpt", | |
"generative pre-trained transformer", | |
"ChatGPT", | |
"GPT-3", | |
"GPT-4", | |
"GPT-4o", | |
"OpenAI GPT" | |
], | |
"blacklist": [ | |
"glucose-6-phosphate transporter", | |
"glutamic pyruvic transaminase", | |
"glutathione peroxidase", | |
"glycerophosphate", | |
"guanosine triphosphate" | |
] | |
}, | |
"claude": { | |
"name": "Claude", | |
"category": "llms", | |
"description": "Anthropic's AI assistant and large language model family", | |
"synonyms": [ | |
"Claude", | |
"claude", | |
"Anthropic Claude", | |
"Claude-3", | |
"Claude Sonnet", | |
"Claude Haiku", | |
"Claude Opus" | |
] | |
}, | |
"bert": { | |
"name": "BERT", | |
"category": "llms", | |
"description": "Bidirectional Encoder Representations from Transformers - Google's pre-trained language model", | |
"synonyms": [ | |
"BERT", | |
"bert", | |
"bidirectional encoder representations", | |
"BERT model", | |
"Google BERT" | |
], | |
"blacklist": [ | |
"behavioral emergency response team", | |
"biomedical emergency response team", | |
"blood-retinal barrier transport", | |
"bronchial epithelial cell" | |
] | |
}, | |
"gemini": { | |
"name": "Gemini", | |
"category": "llms", | |
"description": "Google's multimodal large language model family", | |
"synonyms": [ | |
"Gemini", | |
"gemini", | |
"Google Gemini", | |
"Gemini Pro", | |
"Gemini Ultra", | |
"Gemini Nano" | |
] | |
}, | |
"llama": { | |
"name": "LLaMA", | |
"category": "llms", | |
"description": "Large Language Model Meta AI - Meta's open-source language model family", | |
"synonyms": [ | |
"LLaMA", | |
"llama", | |
"Llama", | |
"Meta LLaMA", | |
"Llama-2", | |
"Llama 2", | |
"Llama 3", | |
"Code Llama" | |
] | |
}, | |
"qwen": { | |
"name": "Qwen", | |
"category": "llms", | |
"description": "Alibaba's large language model series with multilingual capabilities", | |
"synonyms": [ | |
"Qwen", | |
"qwen", | |
"Alibaba Qwen", | |
"Qwen-7B", | |
"Qwen-14B", | |
"Qwen-72B", | |
"Tongyi Qianwen" | |
] | |
}, | |
"deepseek": { | |
"name": "DeepSeek", | |
"category": "llms", | |
"description": "DeepSeek's large language model optimized for code and reasoning", | |
"synonyms": [ | |
"DeepSeek", | |
"deepseek", | |
"DeepSeek Coder", | |
"DeepSeek LLM", | |
"DeepSeek-V2" | |
] | |
}, | |
"mistral": { | |
"name": "Mistral", | |
"category": "llms", | |
"description": "Mistral AI's efficient and powerful open-source language models", | |
"synonyms": [ | |
"Mistral", | |
"mistral", | |
"Mistral 7B", | |
"Mixtral", | |
"Mistral AI", | |
"Mixtral 8x7B" | |
] | |
}, | |
"palm": { | |
"name": "PaLM", | |
"category": "llms", | |
"description": "Pathways Language Model - Google's large-scale language model", | |
"synonyms": [ | |
"PaLM", | |
"palm", | |
"Pathways Language Model", | |
"PaLM-2", | |
"Google PaLM" | |
] | |
}, | |
"t5": { | |
"name": "T5", | |
"category": "llms", | |
"description": "Text-to-Text Transfer Transformer - Google's unified text processing model", | |
"synonyms": [ | |
"T5", | |
"t5", | |
"text-to-text transfer transformer", | |
"Google T5" | |
], | |
"blacklist": [ | |
"T5 vertebra", | |
"T5 spinal", | |
"fifth thoracic vertebra", | |
"thoracic vertebra 5", | |
"T5 nerve root", | |
"T5 dermatome" | |
] | |
}, | |
"roberta": { | |
"name": "RoBERTa", | |
"category": "llms", | |
"description": "Robustly Optimized BERT Pretraining Approach - Meta's improved BERT variant", | |
"synonyms": [ | |
"RoBERTa", | |
"roberta", | |
"robustly optimized BERT", | |
"Meta RoBERTa" | |
] | |
}, | |
"phi": { | |
"name": "Phi", | |
"category": "llms", | |
"description": "Microsoft's small language model series optimized for efficiency", | |
"synonyms": [ | |
"Microsoft Phi", | |
"Microsoft Phi-3", | |
"Microsoft Phi-2", | |
"Microsoft Phi-1", | |
"Phi language model", | |
"Phi LLM", | |
"Phi small language model" | |
], | |
"blacklist": [ | |
"phi angle", | |
"phi coefficient", | |
"phi correlation", | |
"dihedral angle", | |
"phi psi angles", | |
"ramachandran plot", | |
"protein phi", | |
"phi torsion", | |
"golden ratio phi", | |
"phi statistic", | |
"phi phenomenon", | |
"phi value analysis", | |
"protected health information", | |
"personal health information", | |
"phosphatidylinositol", | |
"bacteriophage phi", | |
"phage phi", | |
"phi bacteriophage", | |
"phi X174", | |
"phi 6", | |
"phi 29", | |
"phi92", | |
"magnetic flux phi", | |
"flux phi", | |
"phi magnetic", | |
"volumetric flux", | |
"flow rate phi", | |
"phi value", | |
"phi values", | |
"phi analysis", | |
"phi-value analysis", | |
"protein folding phi", | |
"transition state phi", | |
"nucleation condensation phi", | |
"pharmacologic MRI phi", | |
"phMRI", | |
"DICOM phi", | |
"medical imaging phi", | |
"phi function", | |
"phi distribution", | |
"phi parameter", | |
"phi variable", | |
"phi measurement", | |
"phi calculation" | |
] | |
}, | |
"falcon": { | |
"name": "Falcon", | |
"category": "llms", | |
"description": "Technology Innovation Institute's open-source large language model", | |
"synonyms": [ | |
"Falcon", | |
"falcon", | |
"Falcon-7B", | |
"Falcon-40B", | |
"Falcon-180B", | |
"TII Falcon" | |
] | |
} | |
} | |
} |