Spaces:
Running
Running
Commit
·
3b80791
1
Parent(s):
a0be010
Use older Gradio version and simplest interface
Browse files- app.py +66 -103
- requirements.txt +1 -1
app.py
CHANGED
@@ -12,126 +12,89 @@ logging.basicConfig(level=logging.INFO,
|
|
12 |
stream=sys.stdout)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
-
#
|
16 |
def create_dummy_image():
|
17 |
-
|
18 |
img = PILImage.new('RGB', (256, 256), color = (255, 100, 100))
|
19 |
return img
|
20 |
|
21 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
pipe = None
|
23 |
-
MAX_SEED = np.iinfo(np.int32).max
|
24 |
|
25 |
-
#
|
26 |
-
def
|
27 |
global pipe
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if pipe is None:
|
32 |
-
try:
|
33 |
-
logger.info("First request - loading model...")
|
34 |
-
from diffusers import DiffusionPipeline
|
35 |
-
import torch
|
36 |
-
|
37 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
-
model_repo_id = "stabilityai/sdxl-turbo"
|
39 |
-
|
40 |
-
logger.info(f"Using device: {device}")
|
41 |
-
logger.info(f"Loading model: {model_repo_id}")
|
42 |
-
|
43 |
-
if torch.cuda.is_available():
|
44 |
-
torch_dtype = torch.float16
|
45 |
-
else:
|
46 |
-
torch_dtype = torch.float32
|
47 |
-
|
48 |
-
# 优化内存使用
|
49 |
-
pipe = DiffusionPipeline.from_pretrained(
|
50 |
-
model_repo_id,
|
51 |
-
torch_dtype=torch_dtype,
|
52 |
-
variant="fp16" if torch.cuda.is_available() else None,
|
53 |
-
use_safetensors=True
|
54 |
-
)
|
55 |
-
pipe = pipe.to(device)
|
56 |
-
|
57 |
-
# 优化内存
|
58 |
-
if torch.cuda.is_available():
|
59 |
-
pipe.enable_attention_slicing()
|
60 |
-
# 释放不必要的内存
|
61 |
-
torch.cuda.empty_cache()
|
62 |
-
|
63 |
-
logger.info("Model loaded successfully")
|
64 |
-
|
65 |
-
except Exception as e:
|
66 |
-
logger.error(f"Error loading model: {str(e)}")
|
67 |
-
return create_dummy_image()
|
68 |
-
|
69 |
-
# 处理空提示
|
70 |
-
if not prompt or prompt.strip() == "":
|
71 |
-
prompt = "A beautiful landscape"
|
72 |
-
logger.info(f"Empty prompt, using default: {prompt}")
|
73 |
-
|
74 |
-
logger.info(f"Generating image for prompt: {prompt}")
|
75 |
-
seed = random.randint(0, MAX_SEED)
|
76 |
-
generator = torch.Generator().manual_seed(seed)
|
77 |
-
|
78 |
-
# 简化参数和异常处理
|
79 |
-
try:
|
80 |
-
# 使用最小的推理步骤以减轻资源压力
|
81 |
-
image = pipe(
|
82 |
-
prompt=prompt,
|
83 |
-
guidance_scale=0.0, # 设为0以获得最快的推理时间
|
84 |
-
num_inference_steps=1, # 减少步骤
|
85 |
-
generator=generator,
|
86 |
-
height=256, # 减小图像尺寸
|
87 |
-
width=256 # 减小图像尺寸
|
88 |
-
).images[0]
|
89 |
-
|
90 |
-
# 确保图像是有效的PIL图像
|
91 |
-
if not isinstance(image, PILImage.Image):
|
92 |
-
logger.warning("Converting image to PIL format")
|
93 |
-
image = PILImage.fromarray(np.array(image))
|
94 |
-
|
95 |
-
# 转换图像模式
|
96 |
-
if image.mode != 'RGB':
|
97 |
-
image = image.convert('RGB')
|
98 |
-
|
99 |
-
logger.info("Image generation successful")
|
100 |
-
|
101 |
-
# 释放内存
|
102 |
-
if torch.cuda.is_available():
|
103 |
-
torch.cuda.empty_cache()
|
104 |
-
|
105 |
-
return image
|
106 |
-
|
107 |
-
except Exception as e:
|
108 |
-
logger.error(f"Error in image generation: {str(e)}")
|
109 |
return create_dummy_image()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
|
|
|
|
111 |
except Exception as e:
|
112 |
-
logger.error(f"
|
113 |
return create_dummy_image()
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
fn=
|
118 |
-
inputs=
|
119 |
-
outputs=
|
120 |
-
title="
|
121 |
-
description="
|
122 |
-
examples=["
|
123 |
-
cache_examples=False
|
124 |
)
|
125 |
|
126 |
# 启动应用
|
127 |
if __name__ == "__main__":
|
128 |
try:
|
129 |
-
logger.info("Starting Gradio
|
130 |
-
|
131 |
-
server_name="0.0.0.0",
|
132 |
-
server_port=7860,
|
133 |
-
show_api=False, # 禁用API
|
134 |
-
share=False
|
135 |
-
)
|
136 |
except Exception as e:
|
137 |
-
logger.error(f"
|
|
|
12 |
stream=sys.stdout)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
15 |
+
# 创建一个简单的示例图像
|
16 |
def create_dummy_image():
|
17 |
+
logger.info("Creating dummy image")
|
18 |
img = PILImage.new('RGB', (256, 256), color = (255, 100, 100))
|
19 |
return img
|
20 |
|
21 |
+
# 使用小型模型减轻负担
|
22 |
+
def get_model():
|
23 |
+
try:
|
24 |
+
from diffusers import StableDiffusionPipeline
|
25 |
+
import torch
|
26 |
+
|
27 |
+
logger.info("Loading smaller model: runwayml/stable-diffusion-v1-5")
|
28 |
+
|
29 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
30 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
logger.info(f"Using device: {device}")
|
32 |
+
|
33 |
+
if torch.cuda.is_available():
|
34 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
35 |
+
pipe = pipe.to(device)
|
36 |
+
pipe.enable_attention_slicing()
|
37 |
+
else:
|
38 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
39 |
+
pipe = pipe.to(device)
|
40 |
+
|
41 |
+
logger.info("Model loaded successfully")
|
42 |
+
return pipe
|
43 |
+
except Exception as e:
|
44 |
+
logger.error(f"Failed to load model: {e}")
|
45 |
+
return None
|
46 |
+
|
47 |
+
# 全局变量
|
48 |
pipe = None
|
|
|
49 |
|
50 |
+
# 非常简单的功能实现
|
51 |
+
def generate(prompt):
|
52 |
global pipe
|
53 |
|
54 |
+
# 如果提示为空,使用默认提示
|
55 |
+
if not prompt or prompt.strip() == "":
|
56 |
+
prompt = "a beautiful landscape"
|
57 |
+
|
58 |
+
logger.info(f"Received prompt: {prompt}")
|
59 |
+
|
60 |
+
# 第一次调用时加载模型
|
61 |
+
if pipe is None:
|
62 |
+
pipe = get_model()
|
63 |
+
# 如果模型加载失败,返回示例图像
|
64 |
if pipe is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
return create_dummy_image()
|
66 |
+
|
67 |
+
try:
|
68 |
+
logger.info("Starting image generation")
|
69 |
+
# 使用最小的计算量生成图像
|
70 |
+
image = pipe(
|
71 |
+
prompt=prompt,
|
72 |
+
num_inference_steps=1,
|
73 |
+
guidance_scale=7.0,
|
74 |
+
height=256,
|
75 |
+
width=256
|
76 |
+
).images[0]
|
77 |
|
78 |
+
logger.info("Image generated successfully")
|
79 |
+
return image
|
80 |
except Exception as e:
|
81 |
+
logger.error(f"Generation failed: {e}")
|
82 |
return create_dummy_image()
|
83 |
|
84 |
+
# 极简界面
|
85 |
+
iface = gr.Interface(
|
86 |
+
fn=generate,
|
87 |
+
inputs="text",
|
88 |
+
outputs="image",
|
89 |
+
title="Simple Text-to-Image",
|
90 |
+
description="Type a prompt to generate an image.",
|
91 |
+
examples=["a cat", "mountain landscape"]
|
|
|
92 |
)
|
93 |
|
94 |
# 启动应用
|
95 |
if __name__ == "__main__":
|
96 |
try:
|
97 |
+
logger.info("Starting Gradio interface")
|
98 |
+
iface.launch(server_name="0.0.0.0")
|
|
|
|
|
|
|
|
|
|
|
99 |
except Exception as e:
|
100 |
+
logger.error(f"Failed to launch: {e}")
|
requirements.txt
CHANGED
@@ -2,5 +2,5 @@ accelerate==0.21.0
|
|
2 |
diffusers==0.20.0
|
3 |
torch==2.0.1
|
4 |
transformers==4.34.0
|
5 |
-
gradio==3.
|
6 |
Pillow==10.0.0
|
|
|
2 |
diffusers==0.20.0
|
3 |
torch==2.0.1
|
4 |
transformers==4.34.0
|
5 |
+
gradio==3.24.1
|
6 |
Pillow==10.0.0
|