RynnEC / rynnec /model /__init__.py
lixin4ever's picture
Upload (#2)
372785b verified
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import shutil
import torch
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig, AutoProcessor
from .projector import load_mm_projector
from .videollama3_encoder import Videollama3VisionEncoderModel, Videollama3VisionEncoderConfig
from .rynnec_qwen2 import RynnecQwen2ForCausalLM, RynnecQwen2Config, Videollama3Qwen2Processor
def apply_liger_kernel_to_rynnec():
from liger_kernel.transformers import (
apply_liger_kernel_to_mistral,
apply_liger_kernel_to_qwen2,
apply_liger_kernel_to_qwen3,
apply_liger_kernel_to_qwen3_moe,
)
from liger_kernel.transformers.rope import liger_rotary_pos_emb
from liger_kernel.transformers.layer_norm import LigerLayerNorm
from .videollama3_encoder import modeling_videollama3_encoder
apply_liger_kernel_to_mistral()
apply_liger_kernel_to_qwen2()
modeling_videollama3_encoder.apply_rotary_pos_emb_vision = liger_rotary_pos_emb
modeling_videollama3_encoder.LayerNorm = LigerLayerNorm
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", **kwargs):
if 'token' in kwargs:
token = kwargs['token']
else:
token = None
# NOTE: auto device_map by default
# if want to put model into a single device, you can set device_map={"": "cuda:0"}
kwargs = {"device_map": device_map, **kwargs}
config = AutoConfig.from_pretrained(model_path)
config._attn_implementation = kwargs.pop('attn_implementation', "flash_attention_2") # default to flash_attention_2
torch_dtype = config.torch_dtype if hasattr(config, "torch_dtype") else kwargs.pop('torch_dtype', torch.float16)
if load_8bit:
kwargs['load_in_8bit'] = True
elif load_4bit:
# NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time."""
# kwargs['load_in_4bit'] = True
kwargs['quantization_config'] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
else:
kwargs['torch_dtype'] = torch_dtype
# judge model type
model_type = config.model_type if hasattr(config, "model_type") else kwargs.pop('model_type', "rynnec_qwen2")
# judge pretrain/finetune
is_alignment = getattr(config, "tune_mm_mlp_adapter", False) or getattr(config, "is_alignment", False)
# NOTE: lora/qlora model loading
if 'lora' in model_name.lower() or 'qlora' in model_name.lower():
# if True:
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
# NOTE: remove qlora training quantization config
if hasattr(cfg_pretrained, 'quantization_config'):
del cfg_pretrained.quantization_config
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
print('Loading RynnEC from base model...')
config_raw = AutoConfig.from_pretrained(model_base)
new_vocab_size = config.vocab_size
if config.vocab_size!=config_raw.vocab_size:
config.vocab_size = config_raw.vocab_size
config.training = False
if 'qwen2' in model_base.lower():
model = RynnecQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = RynnecQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
model.config.mask_decoder_model = "./checkpoints/sam2_hiera_large.pt"
token_num, tokem_dim = new_vocab_size, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional RynnEC weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
# add
sam2_model = torch.load(model.config.mask_decoder_model, map_location='cpu')['model']
prefix = "base_model.model.grounding_encoder.sam2_model."
for param_name in sam2_model.keys():
new_param_name = prefix + param_name
if new_param_name not in non_lora_trainables.keys():
non_lora_trainables[new_param_name] = sam2_model[param_name]
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None or '-base' in model_name.lower() or is_alignment:
# NOTE: Base/Pretrain model loading
print('Loading RynnEC from base model...')
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
if model_type in ['rynnec', 'rynnec_qwen2']:
model = RynnecQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = RynnecQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
# NOTE; loading vision-language projector
# * old codes for loading local mm_projector.bin
# mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
# mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
# model.load_state_dict(mm_projector_weights, strict=False)
# * new codes which supports loading mm_projector.bin both offline and online
mm_projector_weights = load_mm_projector(model_path, token=token)
model.load_state_dict(mm_projector_weights, strict=False)
elif 'rynnec' in model_type:
# NOTE: SFT model loading
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
if model_type in ['rynnec_qwen2']:
model = RynnecQwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token)
model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs)
processor = None
# if "videollama" in model_type:
if True:
vision_encoder = model.get_vision_encoder()
processor = vision_encoder.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, processor, context_len