Spaces:
Sleeping
Sleeping
File size: 2,917 Bytes
f0f3558 c0cb5bb f0f3558 cef2d02 f0f3558 f148efd f0f3558 cef2d02 f0f3558 cef2d02 f0f3558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import gradio as gr
import cv2
from deepface import DeepFace
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import tempfile
analyzer = SentimentIntensityAnalyzer()
def analyze_text(text):
score = analyzer.polarity_scores(text)
if score['compound'] >= 0.05:
return "Positive π"
elif score['compound'] <= -0.05:
return "Negative π "
else:
return "Neutral π"
def process_all(text, video):
text_sentiment = analyze_sentiment(text)
video_emotion = analyze_video_emotion(video)
return f"Text Sentiment: {text_sentiment}\nFacial Emotion: {video_emotion}"
iface = gr.Interface(
fn=process_all,
inputs=[gr.Textbox(label="Social Media Post"), gr.Video(label="Upload Video")],
outputs="text",
title="Emotion & Sentiment Analyzer"
)
iface.launch()
def analyze_video(video_file):
if video_file is None:
return "No video uploaded"
# Save uploaded file temporarily
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
with open(temp_path, "wb") as f:
f.write(video_file.read())
cap = cv2.VideoCapture(temp_path)
success, frame = cap.read()
cap.release()
def analyze_video_emotion(video_file):
# Save the uploaded video to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
tmp.write(video_file.read())
tmp_path = tmp.name
cap = cv2.VideoCapture(tmp_path)
emotions = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret or frame_count > 60: # Limit to 60 frames max
break
try:
result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
emotions.append(result[0]['dominant_emotion'])
except:
pass
frame_count += 1
cap.release()
if emotions:
# Return most common emotion
return max(set(emotions), key=emotions.count)
else:
return "No face detected"
if not success:
return "Could not read video"
try:
result = DeepFace.analyze(frame, actions=["emotion"], enforce_detection=False)
return result[0]['dominant_emotion'].capitalize()
except Exception as e:
return f"Error: {str(e)}"
def analyze_post(text, video):
sentiment = analyze_text(text)
emotion = analyze_video(video)
return f"π Sentiment: {sentiment}\nπ₯ Emotion: {emotion}"
interface = gr.Interface(
fn=analyze_post,
inputs=[
gr.Textbox(label="Post Text", placeholder="Enter your message here"),
gr.File(label="Upload video (.mp4)", file_types=[".mp4"])
],
outputs="text",
title="π± Emotion & Sentiment Analyzer",
description="Analyze text sentiment and facial emotion from video. No re-running needed. Permanent on Hugging Face."
)
interface.launch()
|