File size: 6,403 Bytes
f0f3558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0cb5bb
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f3558
 
 
 
cef2d02
f0f3558
 
 
 
 
 
 
f148efd
 
 
 
 
 
 
 
 
 
 
2804ec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f148efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f3558
 
 
 
 
 
 
 
 
 
 
 
 
 
2026d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f3558
 
 
 
cef2d02
 
f0f3558
cdd93c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0f3558
 
cef2d02
f0f3558
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import cv2
from deepface import DeepFace
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import tempfile

analyzer = SentimentIntensityAnalyzer()

def analyze_text(text):
    score = analyzer.polarity_scores(text)
    if score['compound'] >= 0.05:
        return "Positive 😊"
    elif score['compound'] <= -0.05:
        return "Negative 😠"
    else:
        return "Neutral 😐"

def process_all(text, video):
    text_sentiment = analyze_sentiment(text)
    video_emotion = analyze_video_emotion(video)
    return f"Text Sentiment: {text_sentiment}\nFacial Emotion: {video_emotion}"

iface = gr.Interface(
    fn=process_all,
    inputs=[gr.Textbox(label="Social Media Post"), gr.Video(label="Upload Video")],
    outputs="text",
    title="Emotion & Sentiment Analyzer"
)

iface.launch()

def analyze_video(video_file):
    if video_file is None:
        return "No video uploaded"

    # Save uploaded file temporarily
    temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
    with open(temp_path, "wb") as f:
        f.write(video_file.read())

    cap = cv2.VideoCapture(temp_path)
    success, frame = cap.read()
    cap.release()
    
def analyze_video_emotion(video_file):
    # Save the uploaded video to a temp file
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
        tmp.write(video_file.read())
        tmp_path = tmp.name

    cap = cv2.VideoCapture(tmp_path)
    emotions = []
    frame_count = 0

    import cv2
import tempfile
from deepface import DeepFace

def analyze_video_emotion(video_file):
    # Save the uploaded video to a temp file
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
        tmp.write(video_file.read())
        tmp_path = tmp.name

    cap = cv2.VideoCapture(tmp_path)
    emotions = []
    frame_count = 0

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret or frame_count > 60:  # Limit to first 60 frames
            break
        try:
            result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
            emotions.append(result[0]['dominant_emotion'])
        except Exception as e:
            print("Error analyzing frame:", e)
        frame_count += 1

    cap.release()

    if emotions:
        # Return most frequent emotion
        return max(set(emotions), key=emotions.count)
    else:
        return "No emotion detected or face not found"


    while cap.isOpened():
        ret, frame = cap.read()
        if not ret or frame_count > 60:  # Limit to 60 frames max
            break
        try:
            result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
            emotions.append(result[0]['dominant_emotion'])
        except:
            pass
        frame_count += 1

    cap.release()

    if emotions:
        # Return most common emotion
        return max(set(emotions), key=emotions.count)
    else:
        return "No face detected"


    if not success:
        return "Could not read video"

    try:
        result = DeepFace.analyze(frame, actions=["emotion"], enforce_detection=False)
        return result[0]['dominant_emotion'].capitalize()
    except Exception as e:
        return f"Error: {str(e)}"

def analyze_post(text, video):
    sentiment = analyze_text(text)
    emotion = analyze_video(video)
    return f"πŸ“ Sentiment: {sentiment}\nπŸŽ₯ Emotion: {emotion}"
import gradio as gr

def analyze_text(text):
    from transformers import pipeline
    classifier = pipeline("sentiment-analysis")
    return classifier(text)[0]['label']

def process_all(text_input, video_input):
    text_result = analyze_text(text_input)
    video_result = analyze_video_emotion(video_input)
    return f"Text Sentiment: {text_result}\nFacial Emotion: {video_result}"

gr.Interface(
    fn=process_all,
    inputs=[
        gr.Textbox(label="Enter Social Media Text"),
        gr.Video(label="Upload a Video Clip")
    ],
    outputs="text",
    title="Emotion & Sentiment Decoder",
    description="Analyzes social media text & facial expressions from video."
).launch()
    

interface = gr.Interface(
    fn=analyze_post,
    inputs=[
        gr.Textbox(label="Post Text", placeholder="Enter your message here"),
        gr.File(label="Upload video (.mp4)", file_types=[".mp4"])
    ],
from transformers import pipeline
import moviepy.editor as mp

def analyze_text(text):
    classifier = pipeline("sentiment-analysis")
    return classifier(text)[0]['label']

def analyze_video_emotion(video_file):
    try:
        # Save the uploaded video to a temp file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
            tmp.write(video_file.read())
            tmp_path = tmp.name

        # Extract frames using MoviePy (more reliable than OpenCV alone)
        video = mp.VideoFileClip(tmp_path)
        frames = list(video.iter_frames())
        
        emotions = []
        for frame in frames[:60]:  # Limit to first 60 frames
            try:
                # Use DeepFace for emotion detection
                result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
                emotions.append(result[0]['dominant_emotion'])
            except Exception as e:
                print("Error analyzing frame:", e)

        if emotions:
            # Return the most common emotion
            return max(set(emotions), key=emotions.count)
        else:
            return "No face detected"

    except Exception as e:
        print("Error processing video:", e)
        return "Error processing video file"

def process_all(text_input, video_input):
    text_result = analyze_text(text_input)
    video_result = analyze_video_emotion(video_input)
    return f"Text Sentiment: {text_result}\nFacial Emotion: {video_result}"

iface = gr.Interface(
    fn=process_all,
    inputs=[
        gr.Textbox(label="Enter Social Media Text"),
        gr.Video(label="Upload a Video Clip")
    ],
    outputs="text",
    title="Emotion & Sentiment Decoder",
    description="Analyzes social media text & facial expressions from video."
)

iface.launch()

    outputs="text",
    title="πŸ“± Emotion & Sentiment Analyzer",
    description="Analyze text sentiment and facial emotion from video. No re-running needed. Permanent on Hugging Face."
)

interface.launch()