Spaces:
Sleeping
Sleeping
File size: 6,403 Bytes
f0f3558 c0cb5bb f0f3558 cef2d02 f0f3558 f148efd 2804ec4 f148efd f0f3558 2026d73 f0f3558 cef2d02 f0f3558 cdd93c7 f0f3558 cef2d02 f0f3558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
import cv2
from deepface import DeepFace
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import tempfile
analyzer = SentimentIntensityAnalyzer()
def analyze_text(text):
score = analyzer.polarity_scores(text)
if score['compound'] >= 0.05:
return "Positive π"
elif score['compound'] <= -0.05:
return "Negative π "
else:
return "Neutral π"
def process_all(text, video):
text_sentiment = analyze_sentiment(text)
video_emotion = analyze_video_emotion(video)
return f"Text Sentiment: {text_sentiment}\nFacial Emotion: {video_emotion}"
iface = gr.Interface(
fn=process_all,
inputs=[gr.Textbox(label="Social Media Post"), gr.Video(label="Upload Video")],
outputs="text",
title="Emotion & Sentiment Analyzer"
)
iface.launch()
def analyze_video(video_file):
if video_file is None:
return "No video uploaded"
# Save uploaded file temporarily
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
with open(temp_path, "wb") as f:
f.write(video_file.read())
cap = cv2.VideoCapture(temp_path)
success, frame = cap.read()
cap.release()
def analyze_video_emotion(video_file):
# Save the uploaded video to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
tmp.write(video_file.read())
tmp_path = tmp.name
cap = cv2.VideoCapture(tmp_path)
emotions = []
frame_count = 0
import cv2
import tempfile
from deepface import DeepFace
def analyze_video_emotion(video_file):
# Save the uploaded video to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
tmp.write(video_file.read())
tmp_path = tmp.name
cap = cv2.VideoCapture(tmp_path)
emotions = []
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret or frame_count > 60: # Limit to first 60 frames
break
try:
result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
emotions.append(result[0]['dominant_emotion'])
except Exception as e:
print("Error analyzing frame:", e)
frame_count += 1
cap.release()
if emotions:
# Return most frequent emotion
return max(set(emotions), key=emotions.count)
else:
return "No emotion detected or face not found"
while cap.isOpened():
ret, frame = cap.read()
if not ret or frame_count > 60: # Limit to 60 frames max
break
try:
result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
emotions.append(result[0]['dominant_emotion'])
except:
pass
frame_count += 1
cap.release()
if emotions:
# Return most common emotion
return max(set(emotions), key=emotions.count)
else:
return "No face detected"
if not success:
return "Could not read video"
try:
result = DeepFace.analyze(frame, actions=["emotion"], enforce_detection=False)
return result[0]['dominant_emotion'].capitalize()
except Exception as e:
return f"Error: {str(e)}"
def analyze_post(text, video):
sentiment = analyze_text(text)
emotion = analyze_video(video)
return f"π Sentiment: {sentiment}\nπ₯ Emotion: {emotion}"
import gradio as gr
def analyze_text(text):
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
return classifier(text)[0]['label']
def process_all(text_input, video_input):
text_result = analyze_text(text_input)
video_result = analyze_video_emotion(video_input)
return f"Text Sentiment: {text_result}\nFacial Emotion: {video_result}"
gr.Interface(
fn=process_all,
inputs=[
gr.Textbox(label="Enter Social Media Text"),
gr.Video(label="Upload a Video Clip")
],
outputs="text",
title="Emotion & Sentiment Decoder",
description="Analyzes social media text & facial expressions from video."
).launch()
interface = gr.Interface(
fn=analyze_post,
inputs=[
gr.Textbox(label="Post Text", placeholder="Enter your message here"),
gr.File(label="Upload video (.mp4)", file_types=[".mp4"])
],
from transformers import pipeline
import moviepy.editor as mp
def analyze_text(text):
classifier = pipeline("sentiment-analysis")
return classifier(text)[0]['label']
def analyze_video_emotion(video_file):
try:
# Save the uploaded video to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
tmp.write(video_file.read())
tmp_path = tmp.name
# Extract frames using MoviePy (more reliable than OpenCV alone)
video = mp.VideoFileClip(tmp_path)
frames = list(video.iter_frames())
emotions = []
for frame in frames[:60]: # Limit to first 60 frames
try:
# Use DeepFace for emotion detection
result = DeepFace.analyze(frame, actions=['emotion'], enforce_detection=False)
emotions.append(result[0]['dominant_emotion'])
except Exception as e:
print("Error analyzing frame:", e)
if emotions:
# Return the most common emotion
return max(set(emotions), key=emotions.count)
else:
return "No face detected"
except Exception as e:
print("Error processing video:", e)
return "Error processing video file"
def process_all(text_input, video_input):
text_result = analyze_text(text_input)
video_result = analyze_video_emotion(video_input)
return f"Text Sentiment: {text_result}\nFacial Emotion: {video_result}"
iface = gr.Interface(
fn=process_all,
inputs=[
gr.Textbox(label="Enter Social Media Text"),
gr.Video(label="Upload a Video Clip")
],
outputs="text",
title="Emotion & Sentiment Decoder",
description="Analyzes social media text & facial expressions from video."
)
iface.launch()
outputs="text",
title="π± Emotion & Sentiment Analyzer",
description="Analyze text sentiment and facial emotion from video. No re-running needed. Permanent on Hugging Face."
)
interface.launch()
|