FruitQuality / app.py
lopesdri's picture
Update app.py
df9ee76
raw
history blame
857 Bytes
import torch
import torchvision
import torch.nn as nn
model = torchvision.models.resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, num_classes)
model.load_state_dict(torch.load("model.pth"))
model.to(device)
model.eval()
import gradio as gr
from PIL import Image
# Define the function to make predictions
def predict(image):
image = transform(image).unsqueeze(0).to(device)
model.eval()
with torch.no_grad():
output = model(image)
_, predicted = torch.max(output.data, 1)
return dataset.classes[predicted.item()]
# Define the input and output components
image_input = gr.inputs.Image(type="pil", label="Upload Image")
label_output = gr.outputs.Label()
# Create the interface
interface = gr.Interface(fn=predict, inputs=image_input, outputs=label_output)
# Launch the interface
interface.launch()