File size: 1,009 Bytes
339d133
 
 
 
4d78218
339d133
03a517d
339d133
 
03a517d
 
 
 
 
 
339d133
 
4d78218
339d133
03a517d
4d78218
2642a92
4d78218
 
 
 
539c230
3e6e90e
3e1b9a6
 
 
004d756
4d78218
f1fe0df
4d78218
f312c0e
339d133
3e6e90e
339d133
3e6e90e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import cv2
import numpy as np
import gradio as gr
from PIL import Image


model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)


model.conf = 0.25  
model.iou = 0.45  
model.agnostic = False  
model.multi_label = False  
model.max_det = 1000


def detect(img):


    results = model(img, size=640)

    predictions = results.pred[0]
    boxes = predictions[:, :4] # x1, y1, x2, y2
    scores = predictions[:, 4]
    categories = predictions[:, 5]
    new_image = np.squeeze(results.render())
    
  
    # resize image
    new_image = cv2.resize(new_image, dim, interpolation = cv2.INTER_AREA) 

    return new_image

    


css = ".output-image, .input-image, .image-preview {height: 600px !important}"

iface = gr.Interface(fn=detect, 
                     inputs=gr.inputs.Image(type="numpy",), 
                     outputs=gr.outputs.Image(type="numpy",),
                     css=css,
                     enable_queue=True)
iface.launch(debug=True, cache_examples=True)