File size: 949 Bytes
339d133
 
 
 
4d78218
339d133
03a517d
339d133
 
03a517d
 
 
 
 
 
339d133
 
4d78218
339d133
03a517d
4d78218
2642a92
4d78218
 
 
 
539c230
004d756
4d78218
f1fe0df
f312c0e
0573a4e
339d133
e009936
 
339d133
3e6e90e
 
 
 
e009936
0573a4e
5127947
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import torch
import cv2
import numpy as np
import gradio as gr
from PIL import Image


model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)


model.conf = 0.25  
model.iou = 0.45  
model.agnostic = False  
model.multi_label = False  
model.max_det = 1000


def detect(img):


    results = model(img, size=640)

    predictions = results.pred[0]
    boxes = predictions[:, :4] # x1, y1, x2, y2
    scores = predictions[:, 4]
    categories = predictions[:, 5]
    new_image = np.squeeze(results.render())

    return new_image


examples = ['apple_img.jpg',]


css = ".output-image, .input-image, .image-preview {height: 400px !important}"

iface = gr.Interface(fn=detect, 
                     inputs=gr.inputs.Image(type="numpy",), 
                     outputs=gr.outputs.Image(type="numpy",),
                     css=css,
                     examples = examples,
                     )
iface.launch(debug=True, inline=True)