Spaces:
Runtime error
Runtime error
import torch | |
import cv2 | |
import numpy as np | |
import gradio as gr | |
from sahi.prediction import ObjectPrediction | |
from sahi.utils.cv import visualize_object_predictions, read_image | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True) | |
model.conf = 0.25 | |
model.iou = 0.45 | |
model.agnostic = False | |
model.multi_label = False | |
model.max_det = 1000 | |
def detect(img): | |
results = model.predict(image, imgsz=image_size, return_outputs=True) | |
object_prediction_list = [] | |
for _, image_results in enumerate(results): | |
if len(image_results)!=0: | |
image_predictions_in_xyxy_format = image_results['det'] | |
for pred in image_predictions_in_xyxy_format: | |
x1, y1, x2, y2 = ( | |
int(pred[0]), | |
int(pred[1]), | |
int(pred[2]), | |
int(pred[3]), | |
) | |
bbox = [x1, y1, x2, y2] | |
score = pred[4] | |
category_name = model.model.names[int(pred[5])] | |
category_id = pred[5] | |
object_prediction = ObjectPrediction( | |
bbox=bbox, | |
category_id=int(category_id), | |
score=score, | |
category_name=category_name, | |
) | |
object_prediction_list.append(object_prediction) | |
image = read_image(image) | |
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) | |
return output_image['image'] | |
def drawRectangles(image, dfResults): | |
for index, row in dfResults.iterrows(): | |
print( (row['xmin'], row['ymin'])) | |
image = cv2.rectangle(image, (row['xmin'], row['ymin']), (row['xmax'], row['ymax']), (255, 0, 0), 2) | |
return image | |
img = gr.inputs.Image(shape=(192, 192)) | |
intf = gr.Interface(fn=detect, inputs=img, outputs='image') | |
intf.launch(inline=False) |