Spaces:
Running
on
Zero
Running
on
Zero
tiktoken & llama both plotted
Browse files
app.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
import itertools #
|
|
|
|
|
|
|
| 5 |
|
|
|
|
| 6 |
from bytelatent.data.file_util import get_fs
|
| 7 |
from bytelatent.generate_patcher import patcher_nocache
|
| 8 |
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
|
|
@@ -10,221 +13,311 @@ from bytelatent.plotting.entropy_figure_via_matplot_lib import plot_entropies
|
|
| 10 |
from bytelatent.args import TrainArgs
|
| 11 |
from download_blt_weights import main as ensure_present
|
| 12 |
|
| 13 |
-
# --- Global Setup
|
| 14 |
-
# Kept inside the function for simplicity as before.
|
| 15 |
|
| 16 |
-
# Define colors for patches
|
| 17 |
-
|
| 18 |
-
PATCH_COLORS = [
|
| 19 |
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c",
|
| 20 |
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928"
|
| 21 |
-
] # Add more if you expect many
|
| 22 |
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
"""
|
| 26 |
-
Generates the data structure needed for gr.HighlightedText based on patches.
|
| 27 |
-
|
| 28 |
-
Args:
|
| 29 |
-
tokenizer: The BltTokenizer instance.
|
| 30 |
-
patch_lengths_tensor: Tensor containing the length of each patch (in tokens).
|
| 31 |
-
tokens_tensor: Tensor containing the token IDs for the entire sequence.
|
| 32 |
-
colors: A list of color hex codes to cycle through.
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
"""
|
| 38 |
if patch_lengths_tensor is None or tokens_tensor is None or patch_lengths_tensor.numel() == 0:
|
| 39 |
return None
|
| 40 |
-
|
| 41 |
patch_lengths = patch_lengths_tensor.tolist()
|
| 42 |
all_tokens = tokens_tensor.tolist()
|
| 43 |
highlighted_data = []
|
| 44 |
current_token_index = 0
|
| 45 |
-
color_cycler = itertools.cycle(colors)
|
| 46 |
-
|
| 47 |
for i, length in enumerate(patch_lengths):
|
| 48 |
-
if length <= 0:
|
| 49 |
-
continue
|
| 50 |
patch_token_ids = all_tokens[current_token_index : current_token_index + length]
|
| 51 |
-
if not patch_token_ids:
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# Add to highlighted_data: (text, label_for_coloring)
|
| 59 |
highlighted_data.append((patch_text, patch_label))
|
| 60 |
current_token_index += length
|
| 61 |
-
|
| 62 |
-
# Check if all tokens were consumed (optional sanity check)
|
| 63 |
if current_token_index != len(all_tokens):
|
| 64 |
-
print(f"Warning:
|
| 65 |
-
# Decode any remaining tokens if necessary, though this indicates a logic issue
|
| 66 |
remaining_tokens = all_tokens[current_token_index:]
|
| 67 |
if remaining_tokens:
|
| 68 |
-
remaining_text = tokenizer.decode(remaining_tokens)
|
| 69 |
-
|
| 70 |
-
|
| 71 |
return highlighted_data
|
| 72 |
|
| 73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
def process_text(prompt: str, model_name: str = "blt-1b"):
|
| 75 |
"""
|
| 76 |
-
Processes the input prompt using
|
| 77 |
-
|
| 78 |
|
| 79 |
Args:
|
| 80 |
prompt: The input text string from the Gradio interface.
|
| 81 |
-
model_name: The name of the model to use.
|
| 82 |
|
| 83 |
Returns:
|
| 84 |
A tuple containing:
|
| 85 |
-
- Matplotlib Figure for the entropy plot (or None
|
| 86 |
-
- List of tuples for gr.HighlightedText (or None
|
| 87 |
-
-
|
|
|
|
|
|
|
| 88 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
try:
|
| 90 |
-
|
|
|
|
| 91 |
consolidated_path = os.path.join("hf-weights", model_name)
|
| 92 |
train_args_path = os.path.join(consolidated_path, "params.json")
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))
|
| 100 |
-
|
| 101 |
-
tokenizer = train_args.data.tokenizer_args.build()
|
| 102 |
-
assert isinstance(tokenizer, BltTokenizer)
|
| 103 |
-
|
| 104 |
-
patcher_args = train_args.data.patcher_args.model_copy(deep=True)
|
| 105 |
-
patcher_args.realtime_patching = True
|
| 106 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 107 |
-
print(f"Using device: {device}")
|
| 108 |
-
patcher_args.patching_device = device
|
| 109 |
-
patcher_args.device = device
|
| 110 |
-
|
| 111 |
-
print("Loading entropy model and patcher...")
|
| 112 |
entropy_model_dir = os.path.join(consolidated_path, "entropy_model")
|
| 113 |
-
if not os.path.exists(entropy_model_dir):
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
patcher_args.entropy_model_checkpoint_dir = entropy_model_dir
|
| 117 |
-
patcher = patcher_args.build()
|
| 118 |
-
# --- End Loading ---
|
| 119 |
|
| 120 |
# --- Processing ---
|
| 121 |
-
|
| 122 |
-
print(f"Processing prompt: '{prompt}'")
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
if not results:
|
| 128 |
-
print("
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
scores = batch_scores[0]
|
| 136 |
-
tokens = batch_tokens[0]
|
| 137 |
|
| 138 |
-
# Decode the full output once for the plot labels (if needed by plot_entropies)
|
| 139 |
-
# Note: BltTokenizer might decode directly to bytes, then utf-8. Ensure it handles errors.
|
| 140 |
-
try:
|
| 141 |
-
# Using the raw tokens tensor for decoding consistency
|
| 142 |
-
decoded_output_for_plot = tokenizer.decode(tokens.tolist())
|
| 143 |
-
except Exception as decode_err:
|
| 144 |
-
print(f"Warning: Error decoding full sequence for plot: {decode_err}")
|
| 145 |
-
# Fallback: attempt to decode the original prompt if possible, or use generic labels
|
| 146 |
-
decoded_output_for_plot = prompt # Use original prompt as fallback
|
| 147 |
|
| 148 |
-
|
| 149 |
-
fig = plot_entropies(
|
| 150 |
-
patch_lengths,
|
| 151 |
-
scores,
|
| 152 |
-
decoded_output_for_plot, # Pass the decoded string for plot labels
|
| 153 |
-
threshold=patcher.threshold
|
| 154 |
-
)
|
| 155 |
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
)
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
| 163 |
|
| 164 |
-
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
return None, None, f"Error: {str(e)}" # Return None for plot/text, error message
|
| 169 |
-
except Exception as e:
|
| 170 |
-
print(f"An unexpected error occurred: {e}")
|
| 171 |
-
import traceback
|
| 172 |
-
traceback.print_exc()
|
| 173 |
-
return None, None, f"An unexpected error occurred: {e}" # Return None for plot/text, error message
|
| 174 |
|
| 175 |
-
# --- Gradio Interface ---
|
| 176 |
|
| 177 |
-
|
| 178 |
-
#
|
| 179 |
-
MAX_EXPECTED_PATCHES = 50 # Estimate a reasonable maximum
|
| 180 |
-
color_map = {
|
| 181 |
-
f"Patch {i+1}": color
|
| 182 |
-
for i, color in zip(range(MAX_EXPECTED_PATCHES), itertools.cycle(PATCH_COLORS))
|
| 183 |
-
}
|
| 184 |
-
# Add a color for the potential 'Remainder' label from create_highlighted_text_data
|
| 185 |
-
color_map["Remainder"] = "#808080" # Grey for any leftovers
|
| 186 |
-
|
| 187 |
-
with gr.Blocks() as iface:
|
| 188 |
-
gr.Markdown("# ByteLatent Entropy Visualizer") # Title
|
| 189 |
gr.Markdown(
|
| 190 |
-
"
|
| 191 |
-
"
|
| 192 |
-
"
|
| 193 |
-
"
|
| 194 |
-
line_breaks=True
|
| 195 |
)
|
| 196 |
|
| 197 |
-
with gr.
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
# Define the action for the button click
|
| 221 |
submit_button.click(
|
| 222 |
fn=process_text,
|
| 223 |
inputs=prompt_input,
|
| 224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 225 |
)
|
| 226 |
|
| 227 |
# --- Launch the Gradio App ---
|
| 228 |
if __name__ == "__main__":
|
| 229 |
-
|
|
|
|
|
|
|
| 230 |
iface.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
import itertools # For color cycling
|
| 5 |
+
import tiktoken # For GPT-4 tokenizer
|
| 6 |
+
from transformers import AutoTokenizer, AutoModel # For Llama3 tokenizer
|
| 7 |
|
| 8 |
+
# Bytelatent imports (assuming they are in the python path)
|
| 9 |
from bytelatent.data.file_util import get_fs
|
| 10 |
from bytelatent.generate_patcher import patcher_nocache
|
| 11 |
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
|
|
|
|
| 13 |
from bytelatent.args import TrainArgs
|
| 14 |
from download_blt_weights import main as ensure_present
|
| 15 |
|
| 16 |
+
# --- Global Setup ---
|
|
|
|
| 17 |
|
| 18 |
+
# Define colors for patches/tokens
|
| 19 |
+
VIZ_COLORS = [
|
|
|
|
| 20 |
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c",
|
| 21 |
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928"
|
| 22 |
+
] # Add more if you expect many segments
|
| 23 |
|
| 24 |
+
LLAMA3_MODEL_NAME = "meta-llama/Meta-Llama-3-8B" # Or choose another variant like Instruct
|
| 25 |
|
| 26 |
+
# --- Helper Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
def create_bytelatent_highlight_data(tokenizer, patch_lengths_tensor, tokens_tensor, colors):
|
| 29 |
+
"""Generates data for gr.HighlightedText based on bytelatent patches."""
|
| 30 |
+
# (Keep the function from the previous version - no changes needed)
|
|
|
|
| 31 |
if patch_lengths_tensor is None or tokens_tensor is None or patch_lengths_tensor.numel() == 0:
|
| 32 |
return None
|
|
|
|
| 33 |
patch_lengths = patch_lengths_tensor.tolist()
|
| 34 |
all_tokens = tokens_tensor.tolist()
|
| 35 |
highlighted_data = []
|
| 36 |
current_token_index = 0
|
| 37 |
+
color_cycler = itertools.cycle(colors)
|
|
|
|
| 38 |
for i, length in enumerate(patch_lengths):
|
| 39 |
+
if length <= 0: continue
|
|
|
|
| 40 |
patch_token_ids = all_tokens[current_token_index : current_token_index + length]
|
| 41 |
+
if not patch_token_ids: continue
|
| 42 |
+
try: patch_text = tokenizer.decode(patch_token_ids)
|
| 43 |
+
except Exception as decode_err:
|
| 44 |
+
print(f"Warning: Bytelatent patch decoding failed: {decode_err}")
|
| 45 |
+
patch_text = f"[Decode Error: {len(patch_token_ids)} tokens]"
|
| 46 |
+
patch_label = f"BL Patch {i+1}"
|
|
|
|
|
|
|
| 47 |
highlighted_data.append((patch_text, patch_label))
|
| 48 |
current_token_index += length
|
|
|
|
|
|
|
| 49 |
if current_token_index != len(all_tokens):
|
| 50 |
+
print(f"Warning: Bytelatent token mismatch. Consumed {current_token_index}, total {len(all_tokens)}")
|
|
|
|
| 51 |
remaining_tokens = all_tokens[current_token_index:]
|
| 52 |
if remaining_tokens:
|
| 53 |
+
try: remaining_text = tokenizer.decode(remaining_tokens)
|
| 54 |
+
except Exception: remaining_text = f"[Decode Error: {len(remaining_tokens)} remaining tokens]"
|
| 55 |
+
highlighted_data.append((remaining_text, "BL Remainder"))
|
| 56 |
return highlighted_data
|
| 57 |
|
| 58 |
|
| 59 |
+
def create_tiktoken_highlight_data(prompt, colors):
|
| 60 |
+
"""Generates data for gr.HighlightedText based on tiktoken (gpt-4) tokens."""
|
| 61 |
+
# (Keep the function from the previous version - no changes needed)
|
| 62 |
+
try:
|
| 63 |
+
enc = tiktoken.get_encoding("cl100k_base")
|
| 64 |
+
tiktoken_ids = enc.encode(prompt)
|
| 65 |
+
highlighted_data = []
|
| 66 |
+
color_cycler = itertools.cycle(colors)
|
| 67 |
+
for i, token_id in enumerate(tiktoken_ids):
|
| 68 |
+
try: token_text = enc.decode([token_id])
|
| 69 |
+
except UnicodeDecodeError:
|
| 70 |
+
try:
|
| 71 |
+
token_bytes = enc.decode_single_token_bytes(token_id)
|
| 72 |
+
token_text = f"[Bytes: {token_bytes.hex()}]"
|
| 73 |
+
except Exception: token_text = "[Decode Error]"
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"Unexpected tiktoken decode error: {e}")
|
| 76 |
+
token_text = "[Decode Error]"
|
| 77 |
+
token_label = f"GPT4 Tk {i+1}"
|
| 78 |
+
highlighted_data.append((token_text, token_label))
|
| 79 |
+
print(f"Tiktoken processing complete. Found {len(tiktoken_ids)} tokens.")
|
| 80 |
+
return highlighted_data
|
| 81 |
+
except ImportError:
|
| 82 |
+
print("Error: tiktoken library not found. Please install it: pip install tiktoken")
|
| 83 |
+
return [("tiktoken library not installed.", "Error")]
|
| 84 |
+
except Exception as tiktoken_err:
|
| 85 |
+
print(f"Error during tiktoken processing: {tiktoken_err}")
|
| 86 |
+
return [(f"Error processing with tiktoken: {str(tiktoken_err)}", "Error")]
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def create_llama3_highlight_data(prompt, colors, model_name=LLAMA3_MODEL_NAME):
|
| 90 |
+
"""Generates data for gr.HighlightedText based on Llama 3 tokenizer."""
|
| 91 |
+
try:
|
| 92 |
+
# Load Llama 3 tokenizer from Hugging Face Hub
|
| 93 |
+
# This might download the tokenizer files on the first run
|
| 94 |
+
# May require `huggingface-cli login` if model is private or gated
|
| 95 |
+
print(f"Loading Llama 3 tokenizer: {model_name}")
|
| 96 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 97 |
+
print("Llama 3 tokenizer loaded.")
|
| 98 |
+
|
| 99 |
+
# Encode the prompt
|
| 100 |
+
llama_token_ids = tokenizer.encode(prompt)
|
| 101 |
+
|
| 102 |
+
highlighted_data = []
|
| 103 |
+
color_cycler = itertools.cycle(colors)
|
| 104 |
+
|
| 105 |
+
for i, token_id in enumerate(llama_token_ids):
|
| 106 |
+
try:
|
| 107 |
+
# Decode individual token. Llama/SentencePiece tokenizers usually handle this well.
|
| 108 |
+
token_text = tokenizer.decode([token_id])
|
| 109 |
+
# Special case: Handle potential leading space added by sentencepiece during decode
|
| 110 |
+
# if token_text.startswith(' '): # Check if this improves visualization
|
| 111 |
+
# token_text = token_text[1:] # Remove leading space visual artifact? Test this.
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"Unexpected Llama 3 decode error for token {token_id}: {e}")
|
| 114 |
+
token_text = "[Decode Error]"
|
| 115 |
+
|
| 116 |
+
token_label = f"Llama3 Tk {i+1}" # Clearer label prefix
|
| 117 |
+
highlighted_data.append((token_text, token_label))
|
| 118 |
+
|
| 119 |
+
print(f"Llama 3 processing complete. Found {len(llama_token_ids)} tokens.")
|
| 120 |
+
return highlighted_data
|
| 121 |
+
|
| 122 |
+
except ImportError:
|
| 123 |
+
print("Error: transformers or sentencepiece library not found. Please install them: pip install transformers sentencepiece")
|
| 124 |
+
return [("transformers/sentencepiece library not installed.", "Error")]
|
| 125 |
+
except OSError as e:
|
| 126 |
+
# Handle errors like model not found, network issues, authentication needed
|
| 127 |
+
print(f"Error loading Llama 3 tokenizer '{model_name}': {e}")
|
| 128 |
+
if "authentication" in str(e).lower():
|
| 129 |
+
return [(f"Authentication required for Llama 3 tokenizer '{model_name}'. Use `huggingface-cli login`.", "Error")]
|
| 130 |
+
else:
|
| 131 |
+
return [(f"Could not load Llama 3 tokenizer '{model_name}'. Check model name and network. Error: {e}", "Error")]
|
| 132 |
+
except Exception as llama_err:
|
| 133 |
+
print(f"Error during Llama 3 processing: {llama_err}")
|
| 134 |
+
import traceback
|
| 135 |
+
traceback.print_exc() # Print full traceback for debugging
|
| 136 |
+
return [(f"Error processing with Llama 3: {str(llama_err)}", "Error")]
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
# --- Main Processing Function ---
|
| 140 |
+
|
| 141 |
def process_text(prompt: str, model_name: str = "blt-1b"):
|
| 142 |
"""
|
| 143 |
+
Processes the input prompt using ByteLatent, Tiktoken, and Llama 3,
|
| 144 |
+
returning visualizations and status.
|
| 145 |
|
| 146 |
Args:
|
| 147 |
prompt: The input text string from the Gradio interface.
|
| 148 |
+
model_name: The name of the bytelatent model to use.
|
| 149 |
|
| 150 |
Returns:
|
| 151 |
A tuple containing:
|
| 152 |
+
- Matplotlib Figure for the entropy plot (or None).
|
| 153 |
+
- List of tuples for bytelatent gr.HighlightedText (or None).
|
| 154 |
+
- List of tuples for tiktoken gr.HighlightedText (or None).
|
| 155 |
+
- List of tuples for Llama 3 gr.HighlightedText (or None).
|
| 156 |
+
- Status/Error message string.
|
| 157 |
"""
|
| 158 |
+
fig = None
|
| 159 |
+
bl_highlighted_data = None
|
| 160 |
+
tk_highlighted_data = None
|
| 161 |
+
llama_highlighted_data = None
|
| 162 |
+
status_message = "Starting processing..."
|
| 163 |
+
|
| 164 |
+
# --- 1. Tiktoken Processing (Independent) ---
|
| 165 |
+
status_message += "\nProcessing with Tiktoken (gpt-4)..."
|
| 166 |
+
tk_highlighted_data = create_tiktoken_highlight_data(prompt, VIZ_COLORS)
|
| 167 |
+
if tk_highlighted_data and tk_highlighted_data[0][1] == "Error":
|
| 168 |
+
status_message += f"\nTiktoken Error: {tk_highlighted_data[0][0]}"
|
| 169 |
+
else:
|
| 170 |
+
status_message += "\nTiktoken processing successful."
|
| 171 |
+
|
| 172 |
+
# --- 2. Llama 3 Processing (Independent) ---
|
| 173 |
+
status_message += "\nProcessing with Llama 3 tokenizer..."
|
| 174 |
+
llama_highlighted_data = create_llama3_highlight_data(prompt, VIZ_COLORS)
|
| 175 |
+
if llama_highlighted_data and llama_highlighted_data[0][1] == "Error":
|
| 176 |
+
status_message += f"\nLlama 3 Error: {llama_highlighted_data[0][0]}"
|
| 177 |
+
else:
|
| 178 |
+
status_message += "\nLlama 3 processing successful."
|
| 179 |
+
|
| 180 |
+
# --- 3. Bytelatent Processing ---
|
| 181 |
try:
|
| 182 |
+
status_message += f"\nLoading entropy model for '{model_name}'..."
|
| 183 |
+
# (Bytelatent loading code remains the same as previous version)
|
| 184 |
consolidated_path = os.path.join("hf-weights", model_name)
|
| 185 |
train_args_path = os.path.join(consolidated_path, "params.json")
|
| 186 |
+
if not os.path.exists(train_args_path): raise FileNotFoundError(f"Bytelatent training args not found at {train_args_path}.")
|
| 187 |
+
fs = get_fs(train_args_path); train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))
|
| 188 |
+
bl_tokenizer = train_args.data.tokenizer_args.build(); assert isinstance(bl_tokenizer, BltTokenizer)
|
| 189 |
+
patcher_args = train_args.data.patcher_args.model_copy(deep=True); patcher_args.realtime_patching = True
|
| 190 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"; print(f"Using Bytelatent device: {device}")
|
| 191 |
+
patcher_args.patching_device = device; patcher_args.device = device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
entropy_model_dir = os.path.join(consolidated_path, "entropy_model")
|
| 193 |
+
if not os.path.exists(entropy_model_dir): raise FileNotFoundError(f"Bytelatent entropy model directory not found at {entropy_model_dir}.")
|
| 194 |
+
patcher_args.entropy_model_checkpoint_dir = entropy_model_dir; bl_patcher = patcher_args.build()
|
| 195 |
+
status_message += "\nBytelatent model loaded."
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
# --- Processing ---
|
| 198 |
+
status_message += "\nRunning Bytelatent patching..."
|
| 199 |
+
print(f"Processing prompt with Bytelatent: '{prompt}'")
|
| 200 |
+
# Limit prompt length for bytelatent if necessary
|
| 201 |
+
prompt_bytes = prompt.encode('utf-8')
|
| 202 |
+
if len(prompt_bytes) > 512:
|
| 203 |
+
print(f"Warning: Prompt exceeds 512 bytes ({len(prompt_bytes)}). Truncating for Bytelatent.")
|
| 204 |
+
prompt_bl = prompt_bytes[:512].decode('utf-8', errors='ignore')
|
| 205 |
+
status_message += "\nWarning: Prompt truncated to 512 bytes for Bytelatent."
|
| 206 |
+
else:
|
| 207 |
+
prompt_bl = prompt
|
| 208 |
+
|
| 209 |
+
results = patcher_nocache([prompt_bl], tokenizer=bl_tokenizer, patcher=bl_patcher)
|
| 210 |
|
| 211 |
if not results:
|
| 212 |
+
print("Bytelatent processing returned no results.")
|
| 213 |
+
status_message += "\nBytelatent Warning: Processing completed, but no results were generated."
|
| 214 |
+
else:
|
| 215 |
+
batch_patch_lengths, batch_scores, batch_tokens = results
|
| 216 |
+
patch_lengths, scores, tokens = batch_patch_lengths[0], batch_scores[0], batch_tokens[0]
|
| 217 |
+
# --- Visualization Data Generation ---
|
| 218 |
+
try: decoded_output_for_plot = bl_tokenizer.decode(tokens.tolist())
|
| 219 |
+
except Exception as decode_err:
|
| 220 |
+
print(f"Warning: Error decoding full sequence for plot: {decode_err}")
|
| 221 |
+
decoded_output_for_plot = prompt_bl # Use truncated prompt for plot if decode fails
|
| 222 |
+
fig = plot_entropies(patch_lengths, scores, decoded_output_for_plot, threshold=bl_patcher.threshold)
|
| 223 |
+
bl_highlighted_data = create_bytelatent_highlight_data(bl_tokenizer, patch_lengths, tokens, VIZ_COLORS)
|
| 224 |
+
status_message += "\nBytelatent processing and visualization successful."
|
| 225 |
+
print("Bytelatent processing and decoding complete.")
|
| 226 |
|
| 227 |
+
except FileNotFoundError as e:
|
| 228 |
+
print(f"Bytelatent Error: {e}")
|
| 229 |
+
status_message += f"\nBytelatent FileNotFoundError: {str(e)}"
|
| 230 |
+
except Exception as e:
|
| 231 |
+
print(f"An unexpected Bytelatent error occurred: {e}")
|
| 232 |
+
import traceback
|
| 233 |
+
traceback.print_exc()
|
| 234 |
+
status_message += f"\nBytelatent Unexpected Error: {str(e)}"
|
| 235 |
|
| 236 |
+
# Return all generated data and the final status message
|
| 237 |
+
return fig, bl_highlighted_data, tk_highlighted_data, llama_highlighted_data, status_message
|
|
|
|
|
|
|
| 238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
+
# --- Gradio Interface ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
+
# Create color maps for HighlightedText dynamically
|
| 243 |
+
MAX_EXPECTED_SEGMENTS = 1000 # Increase max expected segments further
|
| 244 |
+
common_error_map = {"Error": "#FF0000"} # Red for errors
|
|
|
|
| 245 |
|
| 246 |
+
bytelatent_color_map = {f"BL Patch {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
|
| 247 |
+
bytelatent_color_map["BL Remainder"] = "#808080"; bytelatent_color_map.update(common_error_map)
|
| 248 |
|
| 249 |
+
tiktoken_color_map = {f"GPT4 Tk {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
|
| 250 |
+
tiktoken_color_map.update(common_error_map)
|
| 251 |
|
| 252 |
+
llama3_color_map = {f"Llama3 Tk {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
|
| 253 |
+
llama3_color_map.update(common_error_map)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
|
|
|
| 255 |
|
| 256 |
+
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
| 257 |
+
gr.Markdown("# BLT's Entropy Patcher Visualisation") # Updated Title
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
gr.Markdown(
|
| 259 |
+
"Enter text to visualize its segmentation according to different tokenizers:\n"
|
| 260 |
+
"1. **BLT:** Entropy plot and text segmented by dynamic patches (Input limited to 512 bytes).\n"
|
| 261 |
+
"2. **Tiktoken (GPT-4):** Text segmented by `cl100k_base` tokens.\n"
|
| 262 |
+
"3. **Llama 3:** Text segmented by the `meta-llama/Meta-Llama-3-8B` tokenizer."
|
|
|
|
| 263 |
)
|
| 264 |
|
| 265 |
+
with gr.Row():
|
| 266 |
+
with gr.Column(scale=1): # Input Column
|
| 267 |
+
prompt_input = gr.Textbox(
|
| 268 |
+
label="Input Prompt",
|
| 269 |
+
value="Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin.",
|
| 270 |
+
placeholder="Enter text here...",
|
| 271 |
+
max_length=2048, # Allow even longer input, Bytelatent will truncate
|
| 272 |
+
lines=5,
|
| 273 |
+
info="Processing is limited to the first 512 bytes of the input."
|
| 274 |
+
)
|
| 275 |
+
submit_button = gr.Button("Generate Visualizations", variant="primary")
|
| 276 |
+
status_output = gr.Textbox(label="Processing Status", interactive=False, lines=5)
|
| 277 |
+
|
| 278 |
+
with gr.Column(scale=2): # Output Column
|
| 279 |
+
gr.Markdown("### BLT's Entropy Patcher Output (`100m`)")
|
| 280 |
+
highlighted_output_bl = gr.HighlightedText(
|
| 281 |
+
label="Bytelatent Patched Text",
|
| 282 |
+
color_map=bytelatent_color_map,
|
| 283 |
+
show_legend=False, # Legend can get very long, disable for compactness
|
| 284 |
+
show_inline_category=False,
|
| 285 |
+
)
|
| 286 |
+
plot_output = gr.Plot(label="Bytelatent Entropy vs. Token Index")
|
| 287 |
+
|
| 288 |
+
gr.Markdown("### Tiktoken Output (`cl100k_base` for GPT-4)")
|
| 289 |
+
highlighted_output_tk = gr.HighlightedText(
|
| 290 |
+
label="Tiktoken Segmented Text",
|
| 291 |
+
color_map=tiktoken_color_map,
|
| 292 |
+
show_legend=False,
|
| 293 |
+
show_inline_category=False,
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
gr.Markdown(f"### Llama 3 Output (`{LLAMA3_MODEL_NAME}`)")
|
| 297 |
+
highlighted_output_llama = gr.HighlightedText(
|
| 298 |
+
label="Llama 3 Segmented Text",
|
| 299 |
+
color_map=llama3_color_map,
|
| 300 |
+
show_legend=False,
|
| 301 |
+
show_inline_category=False,
|
| 302 |
+
)
|
| 303 |
|
| 304 |
# Define the action for the button click
|
| 305 |
submit_button.click(
|
| 306 |
fn=process_text,
|
| 307 |
inputs=prompt_input,
|
| 308 |
+
# Ensure order matches the 5 return values of process_text
|
| 309 |
+
outputs=[
|
| 310 |
+
plot_output,
|
| 311 |
+
highlighted_output_bl,
|
| 312 |
+
highlighted_output_tk,
|
| 313 |
+
highlighted_output_llama,
|
| 314 |
+
status_output
|
| 315 |
+
]
|
| 316 |
)
|
| 317 |
|
| 318 |
# --- Launch the Gradio App ---
|
| 319 |
if __name__ == "__main__":
|
| 320 |
+
print("Please ensure 'tiktoken', 'transformers', and 'sentencepiece' are installed (`pip install tiktoken transformers sentencepiece`)")
|
| 321 |
+
print(f"Attempting to use Llama 3 Tokenizer: {LLAMA3_MODEL_NAME}. Ensure you have access (e.g., via `huggingface-cli login` if needed).")
|
| 322 |
+
ensure_present(["blt-1b"]) # Ensure bytelatent model is present
|
| 323 |
iface.launch()
|