Spaces:
Running
on
Zero
Running
on
Zero
tiktoken & llama both plotted
Browse files
app.py
CHANGED
@@ -1,8 +1,11 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
import itertools #
|
|
|
|
|
5 |
|
|
|
6 |
from bytelatent.data.file_util import get_fs
|
7 |
from bytelatent.generate_patcher import patcher_nocache
|
8 |
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
|
@@ -10,221 +13,311 @@ from bytelatent.plotting.entropy_figure_via_matplot_lib import plot_entropies
|
|
10 |
from bytelatent.args import TrainArgs
|
11 |
from download_blt_weights import main as ensure_present
|
12 |
|
13 |
-
# --- Global Setup
|
14 |
-
# Kept inside the function for simplicity as before.
|
15 |
|
16 |
-
# Define colors for patches
|
17 |
-
|
18 |
-
PATCH_COLORS = [
|
19 |
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c",
|
20 |
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928"
|
21 |
-
] # Add more if you expect many
|
22 |
|
|
|
23 |
|
24 |
-
|
25 |
-
"""
|
26 |
-
Generates the data structure needed for gr.HighlightedText based on patches.
|
27 |
-
|
28 |
-
Args:
|
29 |
-
tokenizer: The BltTokenizer instance.
|
30 |
-
patch_lengths_tensor: Tensor containing the length of each patch (in tokens).
|
31 |
-
tokens_tensor: Tensor containing the token IDs for the entire sequence.
|
32 |
-
colors: A list of color hex codes to cycle through.
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
"""
|
38 |
if patch_lengths_tensor is None or tokens_tensor is None or patch_lengths_tensor.numel() == 0:
|
39 |
return None
|
40 |
-
|
41 |
patch_lengths = patch_lengths_tensor.tolist()
|
42 |
all_tokens = tokens_tensor.tolist()
|
43 |
highlighted_data = []
|
44 |
current_token_index = 0
|
45 |
-
color_cycler = itertools.cycle(colors)
|
46 |
-
|
47 |
for i, length in enumerate(patch_lengths):
|
48 |
-
if length <= 0:
|
49 |
-
continue
|
50 |
patch_token_ids = all_tokens[current_token_index : current_token_index + length]
|
51 |
-
if not patch_token_ids:
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
# Add to highlighted_data: (text, label_for_coloring)
|
59 |
highlighted_data.append((patch_text, patch_label))
|
60 |
current_token_index += length
|
61 |
-
|
62 |
-
# Check if all tokens were consumed (optional sanity check)
|
63 |
if current_token_index != len(all_tokens):
|
64 |
-
print(f"Warning:
|
65 |
-
# Decode any remaining tokens if necessary, though this indicates a logic issue
|
66 |
remaining_tokens = all_tokens[current_token_index:]
|
67 |
if remaining_tokens:
|
68 |
-
remaining_text = tokenizer.decode(remaining_tokens)
|
69 |
-
|
70 |
-
|
71 |
return highlighted_data
|
72 |
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def process_text(prompt: str, model_name: str = "blt-1b"):
|
75 |
"""
|
76 |
-
Processes the input prompt using
|
77 |
-
|
78 |
|
79 |
Args:
|
80 |
prompt: The input text string from the Gradio interface.
|
81 |
-
model_name: The name of the model to use.
|
82 |
|
83 |
Returns:
|
84 |
A tuple containing:
|
85 |
-
- Matplotlib Figure for the entropy plot (or None
|
86 |
-
- List of tuples for gr.HighlightedText (or None
|
87 |
-
-
|
|
|
|
|
88 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
try:
|
90 |
-
|
|
|
91 |
consolidated_path = os.path.join("hf-weights", model_name)
|
92 |
train_args_path = os.path.join(consolidated_path, "params.json")
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))
|
100 |
-
|
101 |
-
tokenizer = train_args.data.tokenizer_args.build()
|
102 |
-
assert isinstance(tokenizer, BltTokenizer)
|
103 |
-
|
104 |
-
patcher_args = train_args.data.patcher_args.model_copy(deep=True)
|
105 |
-
patcher_args.realtime_patching = True
|
106 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
107 |
-
print(f"Using device: {device}")
|
108 |
-
patcher_args.patching_device = device
|
109 |
-
patcher_args.device = device
|
110 |
-
|
111 |
-
print("Loading entropy model and patcher...")
|
112 |
entropy_model_dir = os.path.join(consolidated_path, "entropy_model")
|
113 |
-
if not os.path.exists(entropy_model_dir):
|
114 |
-
|
115 |
-
|
116 |
-
patcher_args.entropy_model_checkpoint_dir = entropy_model_dir
|
117 |
-
patcher = patcher_args.build()
|
118 |
-
# --- End Loading ---
|
119 |
|
120 |
# --- Processing ---
|
121 |
-
|
122 |
-
print(f"Processing prompt: '{prompt}'")
|
123 |
-
|
124 |
-
|
125 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
if not results:
|
128 |
-
print("
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
scores = batch_scores[0]
|
136 |
-
tokens = batch_tokens[0]
|
137 |
|
138 |
-
# Decode the full output once for the plot labels (if needed by plot_entropies)
|
139 |
-
# Note: BltTokenizer might decode directly to bytes, then utf-8. Ensure it handles errors.
|
140 |
-
try:
|
141 |
-
# Using the raw tokens tensor for decoding consistency
|
142 |
-
decoded_output_for_plot = tokenizer.decode(tokens.tolist())
|
143 |
-
except Exception as decode_err:
|
144 |
-
print(f"Warning: Error decoding full sequence for plot: {decode_err}")
|
145 |
-
# Fallback: attempt to decode the original prompt if possible, or use generic labels
|
146 |
-
decoded_output_for_plot = prompt # Use original prompt as fallback
|
147 |
|
148 |
-
|
149 |
-
fig = plot_entropies(
|
150 |
-
patch_lengths,
|
151 |
-
scores,
|
152 |
-
decoded_output_for_plot, # Pass the decoded string for plot labels
|
153 |
-
threshold=patcher.threshold
|
154 |
-
)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
)
|
160 |
|
161 |
-
|
162 |
-
|
163 |
|
164 |
-
|
|
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
return None, None, f"Error: {str(e)}" # Return None for plot/text, error message
|
169 |
-
except Exception as e:
|
170 |
-
print(f"An unexpected error occurred: {e}")
|
171 |
-
import traceback
|
172 |
-
traceback.print_exc()
|
173 |
-
return None, None, f"An unexpected error occurred: {e}" # Return None for plot/text, error message
|
174 |
|
175 |
-
# --- Gradio Interface ---
|
176 |
|
177 |
-
|
178 |
-
#
|
179 |
-
MAX_EXPECTED_PATCHES = 50 # Estimate a reasonable maximum
|
180 |
-
color_map = {
|
181 |
-
f"Patch {i+1}": color
|
182 |
-
for i, color in zip(range(MAX_EXPECTED_PATCHES), itertools.cycle(PATCH_COLORS))
|
183 |
-
}
|
184 |
-
# Add a color for the potential 'Remainder' label from create_highlighted_text_data
|
185 |
-
color_map["Remainder"] = "#808080" # Grey for any leftovers
|
186 |
-
|
187 |
-
with gr.Blocks() as iface:
|
188 |
-
gr.Markdown("# ByteLatent Entropy Visualizer") # Title
|
189 |
gr.Markdown(
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"
|
193 |
-
"
|
194 |
-
line_breaks=True
|
195 |
)
|
196 |
|
197 |
-
with gr.
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
# Define the action for the button click
|
221 |
submit_button.click(
|
222 |
fn=process_text,
|
223 |
inputs=prompt_input,
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
)
|
226 |
|
227 |
# --- Launch the Gradio App ---
|
228 |
if __name__ == "__main__":
|
229 |
-
|
|
|
|
|
230 |
iface.launch()
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
import itertools # For color cycling
|
5 |
+
import tiktoken # For GPT-4 tokenizer
|
6 |
+
from transformers import AutoTokenizer, AutoModel # For Llama3 tokenizer
|
7 |
|
8 |
+
# Bytelatent imports (assuming they are in the python path)
|
9 |
from bytelatent.data.file_util import get_fs
|
10 |
from bytelatent.generate_patcher import patcher_nocache
|
11 |
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
|
|
|
13 |
from bytelatent.args import TrainArgs
|
14 |
from download_blt_weights import main as ensure_present
|
15 |
|
16 |
+
# --- Global Setup ---
|
|
|
17 |
|
18 |
+
# Define colors for patches/tokens
|
19 |
+
VIZ_COLORS = [
|
|
|
20 |
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c",
|
21 |
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928"
|
22 |
+
] # Add more if you expect many segments
|
23 |
|
24 |
+
LLAMA3_MODEL_NAME = "meta-llama/Meta-Llama-3-8B" # Or choose another variant like Instruct
|
25 |
|
26 |
+
# --- Helper Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
def create_bytelatent_highlight_data(tokenizer, patch_lengths_tensor, tokens_tensor, colors):
|
29 |
+
"""Generates data for gr.HighlightedText based on bytelatent patches."""
|
30 |
+
# (Keep the function from the previous version - no changes needed)
|
|
|
31 |
if patch_lengths_tensor is None or tokens_tensor is None or patch_lengths_tensor.numel() == 0:
|
32 |
return None
|
|
|
33 |
patch_lengths = patch_lengths_tensor.tolist()
|
34 |
all_tokens = tokens_tensor.tolist()
|
35 |
highlighted_data = []
|
36 |
current_token_index = 0
|
37 |
+
color_cycler = itertools.cycle(colors)
|
|
|
38 |
for i, length in enumerate(patch_lengths):
|
39 |
+
if length <= 0: continue
|
|
|
40 |
patch_token_ids = all_tokens[current_token_index : current_token_index + length]
|
41 |
+
if not patch_token_ids: continue
|
42 |
+
try: patch_text = tokenizer.decode(patch_token_ids)
|
43 |
+
except Exception as decode_err:
|
44 |
+
print(f"Warning: Bytelatent patch decoding failed: {decode_err}")
|
45 |
+
patch_text = f"[Decode Error: {len(patch_token_ids)} tokens]"
|
46 |
+
patch_label = f"BL Patch {i+1}"
|
|
|
|
|
47 |
highlighted_data.append((patch_text, patch_label))
|
48 |
current_token_index += length
|
|
|
|
|
49 |
if current_token_index != len(all_tokens):
|
50 |
+
print(f"Warning: Bytelatent token mismatch. Consumed {current_token_index}, total {len(all_tokens)}")
|
|
|
51 |
remaining_tokens = all_tokens[current_token_index:]
|
52 |
if remaining_tokens:
|
53 |
+
try: remaining_text = tokenizer.decode(remaining_tokens)
|
54 |
+
except Exception: remaining_text = f"[Decode Error: {len(remaining_tokens)} remaining tokens]"
|
55 |
+
highlighted_data.append((remaining_text, "BL Remainder"))
|
56 |
return highlighted_data
|
57 |
|
58 |
|
59 |
+
def create_tiktoken_highlight_data(prompt, colors):
|
60 |
+
"""Generates data for gr.HighlightedText based on tiktoken (gpt-4) tokens."""
|
61 |
+
# (Keep the function from the previous version - no changes needed)
|
62 |
+
try:
|
63 |
+
enc = tiktoken.get_encoding("cl100k_base")
|
64 |
+
tiktoken_ids = enc.encode(prompt)
|
65 |
+
highlighted_data = []
|
66 |
+
color_cycler = itertools.cycle(colors)
|
67 |
+
for i, token_id in enumerate(tiktoken_ids):
|
68 |
+
try: token_text = enc.decode([token_id])
|
69 |
+
except UnicodeDecodeError:
|
70 |
+
try:
|
71 |
+
token_bytes = enc.decode_single_token_bytes(token_id)
|
72 |
+
token_text = f"[Bytes: {token_bytes.hex()}]"
|
73 |
+
except Exception: token_text = "[Decode Error]"
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Unexpected tiktoken decode error: {e}")
|
76 |
+
token_text = "[Decode Error]"
|
77 |
+
token_label = f"GPT4 Tk {i+1}"
|
78 |
+
highlighted_data.append((token_text, token_label))
|
79 |
+
print(f"Tiktoken processing complete. Found {len(tiktoken_ids)} tokens.")
|
80 |
+
return highlighted_data
|
81 |
+
except ImportError:
|
82 |
+
print("Error: tiktoken library not found. Please install it: pip install tiktoken")
|
83 |
+
return [("tiktoken library not installed.", "Error")]
|
84 |
+
except Exception as tiktoken_err:
|
85 |
+
print(f"Error during tiktoken processing: {tiktoken_err}")
|
86 |
+
return [(f"Error processing with tiktoken: {str(tiktoken_err)}", "Error")]
|
87 |
+
|
88 |
+
|
89 |
+
def create_llama3_highlight_data(prompt, colors, model_name=LLAMA3_MODEL_NAME):
|
90 |
+
"""Generates data for gr.HighlightedText based on Llama 3 tokenizer."""
|
91 |
+
try:
|
92 |
+
# Load Llama 3 tokenizer from Hugging Face Hub
|
93 |
+
# This might download the tokenizer files on the first run
|
94 |
+
# May require `huggingface-cli login` if model is private or gated
|
95 |
+
print(f"Loading Llama 3 tokenizer: {model_name}")
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
97 |
+
print("Llama 3 tokenizer loaded.")
|
98 |
+
|
99 |
+
# Encode the prompt
|
100 |
+
llama_token_ids = tokenizer.encode(prompt)
|
101 |
+
|
102 |
+
highlighted_data = []
|
103 |
+
color_cycler = itertools.cycle(colors)
|
104 |
+
|
105 |
+
for i, token_id in enumerate(llama_token_ids):
|
106 |
+
try:
|
107 |
+
# Decode individual token. Llama/SentencePiece tokenizers usually handle this well.
|
108 |
+
token_text = tokenizer.decode([token_id])
|
109 |
+
# Special case: Handle potential leading space added by sentencepiece during decode
|
110 |
+
# if token_text.startswith(' '): # Check if this improves visualization
|
111 |
+
# token_text = token_text[1:] # Remove leading space visual artifact? Test this.
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Unexpected Llama 3 decode error for token {token_id}: {e}")
|
114 |
+
token_text = "[Decode Error]"
|
115 |
+
|
116 |
+
token_label = f"Llama3 Tk {i+1}" # Clearer label prefix
|
117 |
+
highlighted_data.append((token_text, token_label))
|
118 |
+
|
119 |
+
print(f"Llama 3 processing complete. Found {len(llama_token_ids)} tokens.")
|
120 |
+
return highlighted_data
|
121 |
+
|
122 |
+
except ImportError:
|
123 |
+
print("Error: transformers or sentencepiece library not found. Please install them: pip install transformers sentencepiece")
|
124 |
+
return [("transformers/sentencepiece library not installed.", "Error")]
|
125 |
+
except OSError as e:
|
126 |
+
# Handle errors like model not found, network issues, authentication needed
|
127 |
+
print(f"Error loading Llama 3 tokenizer '{model_name}': {e}")
|
128 |
+
if "authentication" in str(e).lower():
|
129 |
+
return [(f"Authentication required for Llama 3 tokenizer '{model_name}'. Use `huggingface-cli login`.", "Error")]
|
130 |
+
else:
|
131 |
+
return [(f"Could not load Llama 3 tokenizer '{model_name}'. Check model name and network. Error: {e}", "Error")]
|
132 |
+
except Exception as llama_err:
|
133 |
+
print(f"Error during Llama 3 processing: {llama_err}")
|
134 |
+
import traceback
|
135 |
+
traceback.print_exc() # Print full traceback for debugging
|
136 |
+
return [(f"Error processing with Llama 3: {str(llama_err)}", "Error")]
|
137 |
+
|
138 |
+
|
139 |
+
# --- Main Processing Function ---
|
140 |
+
|
141 |
def process_text(prompt: str, model_name: str = "blt-1b"):
|
142 |
"""
|
143 |
+
Processes the input prompt using ByteLatent, Tiktoken, and Llama 3,
|
144 |
+
returning visualizations and status.
|
145 |
|
146 |
Args:
|
147 |
prompt: The input text string from the Gradio interface.
|
148 |
+
model_name: The name of the bytelatent model to use.
|
149 |
|
150 |
Returns:
|
151 |
A tuple containing:
|
152 |
+
- Matplotlib Figure for the entropy plot (or None).
|
153 |
+
- List of tuples for bytelatent gr.HighlightedText (or None).
|
154 |
+
- List of tuples for tiktoken gr.HighlightedText (or None).
|
155 |
+
- List of tuples for Llama 3 gr.HighlightedText (or None).
|
156 |
+
- Status/Error message string.
|
157 |
"""
|
158 |
+
fig = None
|
159 |
+
bl_highlighted_data = None
|
160 |
+
tk_highlighted_data = None
|
161 |
+
llama_highlighted_data = None
|
162 |
+
status_message = "Starting processing..."
|
163 |
+
|
164 |
+
# --- 1. Tiktoken Processing (Independent) ---
|
165 |
+
status_message += "\nProcessing with Tiktoken (gpt-4)..."
|
166 |
+
tk_highlighted_data = create_tiktoken_highlight_data(prompt, VIZ_COLORS)
|
167 |
+
if tk_highlighted_data and tk_highlighted_data[0][1] == "Error":
|
168 |
+
status_message += f"\nTiktoken Error: {tk_highlighted_data[0][0]}"
|
169 |
+
else:
|
170 |
+
status_message += "\nTiktoken processing successful."
|
171 |
+
|
172 |
+
# --- 2. Llama 3 Processing (Independent) ---
|
173 |
+
status_message += "\nProcessing with Llama 3 tokenizer..."
|
174 |
+
llama_highlighted_data = create_llama3_highlight_data(prompt, VIZ_COLORS)
|
175 |
+
if llama_highlighted_data and llama_highlighted_data[0][1] == "Error":
|
176 |
+
status_message += f"\nLlama 3 Error: {llama_highlighted_data[0][0]}"
|
177 |
+
else:
|
178 |
+
status_message += "\nLlama 3 processing successful."
|
179 |
+
|
180 |
+
# --- 3. Bytelatent Processing ---
|
181 |
try:
|
182 |
+
status_message += f"\nLoading entropy model for '{model_name}'..."
|
183 |
+
# (Bytelatent loading code remains the same as previous version)
|
184 |
consolidated_path = os.path.join("hf-weights", model_name)
|
185 |
train_args_path = os.path.join(consolidated_path, "params.json")
|
186 |
+
if not os.path.exists(train_args_path): raise FileNotFoundError(f"Bytelatent training args not found at {train_args_path}.")
|
187 |
+
fs = get_fs(train_args_path); train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))
|
188 |
+
bl_tokenizer = train_args.data.tokenizer_args.build(); assert isinstance(bl_tokenizer, BltTokenizer)
|
189 |
+
patcher_args = train_args.data.patcher_args.model_copy(deep=True); patcher_args.realtime_patching = True
|
190 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"; print(f"Using Bytelatent device: {device}")
|
191 |
+
patcher_args.patching_device = device; patcher_args.device = device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
entropy_model_dir = os.path.join(consolidated_path, "entropy_model")
|
193 |
+
if not os.path.exists(entropy_model_dir): raise FileNotFoundError(f"Bytelatent entropy model directory not found at {entropy_model_dir}.")
|
194 |
+
patcher_args.entropy_model_checkpoint_dir = entropy_model_dir; bl_patcher = patcher_args.build()
|
195 |
+
status_message += "\nBytelatent model loaded."
|
|
|
|
|
|
|
196 |
|
197 |
# --- Processing ---
|
198 |
+
status_message += "\nRunning Bytelatent patching..."
|
199 |
+
print(f"Processing prompt with Bytelatent: '{prompt}'")
|
200 |
+
# Limit prompt length for bytelatent if necessary
|
201 |
+
prompt_bytes = prompt.encode('utf-8')
|
202 |
+
if len(prompt_bytes) > 512:
|
203 |
+
print(f"Warning: Prompt exceeds 512 bytes ({len(prompt_bytes)}). Truncating for Bytelatent.")
|
204 |
+
prompt_bl = prompt_bytes[:512].decode('utf-8', errors='ignore')
|
205 |
+
status_message += "\nWarning: Prompt truncated to 512 bytes for Bytelatent."
|
206 |
+
else:
|
207 |
+
prompt_bl = prompt
|
208 |
+
|
209 |
+
results = patcher_nocache([prompt_bl], tokenizer=bl_tokenizer, patcher=bl_patcher)
|
210 |
|
211 |
if not results:
|
212 |
+
print("Bytelatent processing returned no results.")
|
213 |
+
status_message += "\nBytelatent Warning: Processing completed, but no results were generated."
|
214 |
+
else:
|
215 |
+
batch_patch_lengths, batch_scores, batch_tokens = results
|
216 |
+
patch_lengths, scores, tokens = batch_patch_lengths[0], batch_scores[0], batch_tokens[0]
|
217 |
+
# --- Visualization Data Generation ---
|
218 |
+
try: decoded_output_for_plot = bl_tokenizer.decode(tokens.tolist())
|
219 |
+
except Exception as decode_err:
|
220 |
+
print(f"Warning: Error decoding full sequence for plot: {decode_err}")
|
221 |
+
decoded_output_for_plot = prompt_bl # Use truncated prompt for plot if decode fails
|
222 |
+
fig = plot_entropies(patch_lengths, scores, decoded_output_for_plot, threshold=bl_patcher.threshold)
|
223 |
+
bl_highlighted_data = create_bytelatent_highlight_data(bl_tokenizer, patch_lengths, tokens, VIZ_COLORS)
|
224 |
+
status_message += "\nBytelatent processing and visualization successful."
|
225 |
+
print("Bytelatent processing and decoding complete.")
|
226 |
|
227 |
+
except FileNotFoundError as e:
|
228 |
+
print(f"Bytelatent Error: {e}")
|
229 |
+
status_message += f"\nBytelatent FileNotFoundError: {str(e)}"
|
230 |
+
except Exception as e:
|
231 |
+
print(f"An unexpected Bytelatent error occurred: {e}")
|
232 |
+
import traceback
|
233 |
+
traceback.print_exc()
|
234 |
+
status_message += f"\nBytelatent Unexpected Error: {str(e)}"
|
235 |
|
236 |
+
# Return all generated data and the final status message
|
237 |
+
return fig, bl_highlighted_data, tk_highlighted_data, llama_highlighted_data, status_message
|
|
|
|
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
# --- Gradio Interface ---
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
+
# Create color maps for HighlightedText dynamically
|
243 |
+
MAX_EXPECTED_SEGMENTS = 1000 # Increase max expected segments further
|
244 |
+
common_error_map = {"Error": "#FF0000"} # Red for errors
|
|
|
245 |
|
246 |
+
bytelatent_color_map = {f"BL Patch {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
|
247 |
+
bytelatent_color_map["BL Remainder"] = "#808080"; bytelatent_color_map.update(common_error_map)
|
248 |
|
249 |
+
tiktoken_color_map = {f"GPT4 Tk {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
|
250 |
+
tiktoken_color_map.update(common_error_map)
|
251 |
|
252 |
+
llama3_color_map = {f"Llama3 Tk {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))}
|
253 |
+
llama3_color_map.update(common_error_map)
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
|
|
255 |
|
256 |
+
with gr.Blocks(theme=gr.themes.Soft()) as iface:
|
257 |
+
gr.Markdown("# BLT's Entropy Patcher Visualisation") # Updated Title
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
gr.Markdown(
|
259 |
+
"Enter text to visualize its segmentation according to different tokenizers:\n"
|
260 |
+
"1. **BLT:** Entropy plot and text segmented by dynamic patches (Input limited to 512 bytes).\n"
|
261 |
+
"2. **Tiktoken (GPT-4):** Text segmented by `cl100k_base` tokens.\n"
|
262 |
+
"3. **Llama 3:** Text segmented by the `meta-llama/Meta-Llama-3-8B` tokenizer."
|
|
|
263 |
)
|
264 |
|
265 |
+
with gr.Row():
|
266 |
+
with gr.Column(scale=1): # Input Column
|
267 |
+
prompt_input = gr.Textbox(
|
268 |
+
label="Input Prompt",
|
269 |
+
value="Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin.",
|
270 |
+
placeholder="Enter text here...",
|
271 |
+
max_length=2048, # Allow even longer input, Bytelatent will truncate
|
272 |
+
lines=5,
|
273 |
+
info="Processing is limited to the first 512 bytes of the input."
|
274 |
+
)
|
275 |
+
submit_button = gr.Button("Generate Visualizations", variant="primary")
|
276 |
+
status_output = gr.Textbox(label="Processing Status", interactive=False, lines=5)
|
277 |
+
|
278 |
+
with gr.Column(scale=2): # Output Column
|
279 |
+
gr.Markdown("### BLT's Entropy Patcher Output (`100m`)")
|
280 |
+
highlighted_output_bl = gr.HighlightedText(
|
281 |
+
label="Bytelatent Patched Text",
|
282 |
+
color_map=bytelatent_color_map,
|
283 |
+
show_legend=False, # Legend can get very long, disable for compactness
|
284 |
+
show_inline_category=False,
|
285 |
+
)
|
286 |
+
plot_output = gr.Plot(label="Bytelatent Entropy vs. Token Index")
|
287 |
+
|
288 |
+
gr.Markdown("### Tiktoken Output (`cl100k_base` for GPT-4)")
|
289 |
+
highlighted_output_tk = gr.HighlightedText(
|
290 |
+
label="Tiktoken Segmented Text",
|
291 |
+
color_map=tiktoken_color_map,
|
292 |
+
show_legend=False,
|
293 |
+
show_inline_category=False,
|
294 |
+
)
|
295 |
+
|
296 |
+
gr.Markdown(f"### Llama 3 Output (`{LLAMA3_MODEL_NAME}`)")
|
297 |
+
highlighted_output_llama = gr.HighlightedText(
|
298 |
+
label="Llama 3 Segmented Text",
|
299 |
+
color_map=llama3_color_map,
|
300 |
+
show_legend=False,
|
301 |
+
show_inline_category=False,
|
302 |
+
)
|
303 |
|
304 |
# Define the action for the button click
|
305 |
submit_button.click(
|
306 |
fn=process_text,
|
307 |
inputs=prompt_input,
|
308 |
+
# Ensure order matches the 5 return values of process_text
|
309 |
+
outputs=[
|
310 |
+
plot_output,
|
311 |
+
highlighted_output_bl,
|
312 |
+
highlighted_output_tk,
|
313 |
+
highlighted_output_llama,
|
314 |
+
status_output
|
315 |
+
]
|
316 |
)
|
317 |
|
318 |
# --- Launch the Gradio App ---
|
319 |
if __name__ == "__main__":
|
320 |
+
print("Please ensure 'tiktoken', 'transformers', and 'sentencepiece' are installed (`pip install tiktoken transformers sentencepiece`)")
|
321 |
+
print(f"Attempting to use Llama 3 Tokenizer: {LLAMA3_MODEL_NAME}. Ensure you have access (e.g., via `huggingface-cli login` if needed).")
|
322 |
+
ensure_present(["blt-1b"]) # Ensure bytelatent model is present
|
323 |
iface.launch()
|