File size: 4,040 Bytes
e1a2778
 
6f123b5
e1a2778
6f123b5
 
e1a2778
 
 
 
 
 
 
 
 
 
 
8efcf30
e1a2778
 
8efcf30
e1a2778
 
 
 
 
6f123b5
e1a2778
 
 
 
083e188
 
e1a2778
083e188
6934d0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f123b5
e1a2778
 
 
6f123b5
e1a2778
 
 
 
 
 
 
 
 
 
 
6f123b5
 
 
 
 
 
 
e1a2778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8efcf30
 
bd29423
 
 
 
 
 
8f6e915
6f123b5
083e188
 
 
 
 
 
 
 
6f123b5
 
 
 
 
 
 
 
 
 
 
 
 
 
c51c9b4
 
 
 
 
 
 
6f123b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""Boxes for defining PyTorch models."""

from lynxkite.core import ops, workspace
from lynxkite.core.ops import Parameter as P
import torch
import torch_geometric as pyg

ENV = "PyTorch model"


def reg(name, inputs=[], outputs=None, params=[]):
    if outputs is None:
        outputs = inputs
    return ops.register_passive_op(
        ENV,
        name,
        inputs=[
            ops.Input(name=name, position="bottom", type="tensor") for name in inputs
        ],
        outputs=[
            ops.Output(name=name, position="top", type="tensor") for name in outputs
        ],
        params=params,
    )


reg("Input: embedding", outputs=["x"])
reg("Input: graph edges", outputs=["edges"])
reg("Input: label", outputs=["y"])
reg("Input: positive sample", outputs=["x_pos"])
reg("Input: negative sample", outputs=["x_neg"])
reg("Input: sequential", outputs=["y"])
reg("Input: zeros", outputs=["x"])

reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
reg(
    "Neural ODE",
    inputs=["x"],
    params=[
        P.basic("relative_tolerance"),
        P.basic("absolute_tolerance"),
        P.options(
            "method",
            [
                "dopri8",
                "dopri5",
                "bosh3",
                "fehlberg2",
                "adaptive_heun",
                "euler",
                "midpoint",
                "rk4",
                "explicit_adams",
                "implicit_adams",
            ],
        ),
    ],
)
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
reg("LayerNorm", inputs=["x"])
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")])
reg("Softmax", inputs=["x"])
reg(
    "Graph conv",
    inputs=["x", "edges"],
    outputs=["x"],
    params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
)
reg(
    "Activation",
    inputs=["x"],
    params=[P.options("type", ["ReLU", "LeakyReLU", "Tanh", "Mish"])],
)
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
reg("Add", inputs=["a", "b"], outputs=["x"])
reg("Subtract", inputs=["a", "b"], outputs=["x"])
reg("Multiply", inputs=["a", "b"], outputs=["x"])
reg("MSE loss", inputs=["x", "y"], outputs=["loss"])
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"])
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"])
reg(
    "Optimizer",
    inputs=["loss"],
    outputs=[],
    params=[
        P.options(
            "type",
            [
                "AdamW",
                "Adafactor",
                "Adagrad",
                "SGD",
                "Lion",
                "Paged AdamW",
                "Galore AdamW",
            ],
        ),
        P.basic("lr", 0.001),
    ],
)

ops.register_passive_op(
    ENV,
    "Repeat",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[ops.Parameter.basic("times", 1, int)],
)

ops.register_passive_op(
    ENV,
    "Recurrent chain",
    inputs=[ops.Input(name="input", position="top", type="tensor")],
    outputs=[ops.Output(name="output", position="bottom", type="tensor")],
    params=[],
)


def build_model(ws: workspace.Workspace, inputs: dict):
    """Builds the model described in the workspace."""
    optimizers = []
    for node in ws.nodes:
        if node.op.name == "Optimizer":
            optimizers.append(node)
    assert optimizers, "No optimizer found."
    assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
    [optimizer] = optimizers
    inputs = {n.id: [] for n in ws.nodes}
    for e in ws.edges:
        inputs[e.target].append(e.source)
    layers = []
    # TODO: Create layers based on the workspace.
    sizes = {}
    for k, v in inputs.items():
        sizes[k] = v.size
    layers.append((pyg.nn.Linear(sizes["x"], 1024), "x -> x"))
    layers.append((torch.nn.LayerNorm(1024), "x -> x"))
    m = pyg.nn.Sequential("x, edge_index", layers)
    return m