darabos's picture
Improve docs, especially for plugin development.
c577568
"""Graph analytics executor and data types."""
import inspect
import os
from lynxkite.core import ops, workspace
import dataclasses
import functools
import networkx as nx
import pandas as pd
import polars as pl
import traceback
import typing
ENV = "LynxKite Graph Analytics"
@dataclasses.dataclass
class RelationDefinition:
"""
Defines a set of edges.
Attributes:
df: The name of the DataFrame that contains the edges.
source_column: The column in the edge DataFrame that contains the source node ID.
target_column: The column in the edge DataFrame that contains the target node ID.
source_table: The name of the DataFrame that contains the source nodes.
target_table: The name of the DataFrame that contains the target nodes.
source_key: The column in the source table that contains the node ID.
target_key: The column in the target table that contains the node ID.
name: Descriptive name for the relation.
"""
df: str
source_column: str
target_column: str
source_table: str
target_table: str
source_key: str
target_key: str
name: str | None = None
@dataclasses.dataclass
class Bundle:
"""A collection of DataFrames and other data.
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
By convention, if it contains a single DataFrame, it is called `df`.
If it contains a homogeneous graph, it is represented as two DataFrames called `nodes` and
`edges`.
Attributes:
dfs: Named DataFrames.
relations: Metadata that describes the roles of each DataFrame.
Can be empty, if the bundle is just one or more DataFrames.
other: Other data, such as a trained model.
"""
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
other: dict[str, typing.Any] = dataclasses.field(default_factory=dict)
@classmethod
def from_nx(cls, graph: nx.Graph):
edges = nx.to_pandas_edgelist(graph)
d = dict(graph.nodes(data=True))
nodes = pd.DataFrame(d.values(), index=d.keys())
nodes["id"] = nodes.index
if "index" in nodes.columns:
nodes.drop(columns=["index"], inplace=True)
return cls(
dfs={"edges": edges, "nodes": nodes},
relations=[
RelationDefinition(
df="edges",
source_column="source",
target_column="target",
source_table="nodes",
target_table="nodes",
source_key="id",
target_key="id",
)
],
)
@classmethod
def from_df(cls, df: pd.DataFrame):
return cls(dfs={"df": df})
def to_nx(self):
# TODO: Use relations.
graph = nx.DiGraph()
if "nodes" in self.dfs:
df = self.dfs["nodes"]
if df.index.name != "id":
df = df.set_index("id")
graph.add_nodes_from(df.to_dict("index").items())
if "edges" in self.dfs:
edges = self.dfs["edges"]
graph.add_edges_from(
[
(
e["source"],
e["target"],
{k: e[k] for k in edges.columns if k not in ["source", "target"]},
)
for e in edges.to_records()
]
)
return graph
def copy(self):
"""
Returns a shallow copy of the bundle. The Bundle and its containers are new, but
the DataFrames and RelationDefinitions are shared. (The contents of `other` are also shared.)
"""
return Bundle(
dfs=dict(self.dfs),
relations=list(self.relations),
other=dict(self.other),
)
def to_dict(self, limit: int = 100):
"""JSON-serializable representation of the bundle, including some data."""
return {
"dataframes": {
name: {
"columns": [str(c) for c in df.columns],
"data": df_for_frontend(df, limit).values.tolist(),
}
for name, df in self.dfs.items()
},
"relations": [dataclasses.asdict(relation) for relation in self.relations],
"other": {k: str(v) for k, v in self.other.items()},
}
def metadata(self):
"""JSON-serializable information about the bundle, metadata only."""
return {
"dataframes": {
name: {
"columns": sorted(str(c) for c in df.columns),
}
for name, df in self.dfs.items()
},
"relations": [dataclasses.asdict(relation) for relation in self.relations],
"other": {k: getattr(v, "metadata", lambda: {})() for k, v in self.other.items()},
}
def nx_node_attribute_func(name):
"""Decorator for wrapping a function that adds a NetworkX node attribute."""
def decorator(func):
@functools.wraps(func)
def wrapper(graph: nx.Graph, **kwargs):
graph = graph.copy()
attr = func(graph, **kwargs)
nx.set_node_attributes(graph, attr, name)
return graph
return wrapper
return decorator
def disambiguate_edges(ws: workspace.Workspace):
"""If an input plug is connected to multiple edges, keep only the last edge."""
catalog = ops.CATALOGS[ws.env]
nodes = {node.id: node for node in ws.nodes}
seen = set()
for edge in reversed(ws.edges):
dst_node = nodes[edge.target]
op = catalog.get(dst_node.data.title)
if op.get_input(edge.targetHandle).type == list[Bundle]:
# Takes multiple bundles as an input. No need to disambiguate.
continue
if (edge.target, edge.targetHandle) in seen:
i = ws.edges.index(edge)
del ws.edges[i]
if hasattr(ws, "_crdt"):
del ws._crdt["edges"][i]
seen.add((edge.target, edge.targetHandle))
# Outputs are tracked by node ID and output ID.
Outputs = dict[tuple[str, str], typing.Any]
@ops.register_executor(ENV)
async def execute(ws: workspace.Workspace):
catalog = ops.CATALOGS[ws.env]
disambiguate_edges(ws)
outputs: Outputs = {}
nodes = {node.id: node for node in ws.nodes}
todo = set(nodes.keys())
progress = True
while progress:
progress = False
for id in list(todo):
node = nodes[id]
inputs_done = [
(edge.source, edge.sourceHandle) in outputs
for edge in ws.edges
if edge.target == id
]
if all(inputs_done):
# All inputs for this node are ready, we can compute the output.
todo.remove(id)
progress = True
await _execute_node(node, ws, catalog, outputs)
return outputs
async def await_if_needed(obj):
if inspect.isawaitable(obj):
obj = await obj
return obj
async def _execute_node(
node: workspace.WorkspaceNode, ws: workspace.Workspace, catalog: ops.Catalog, outputs: Outputs
):
params = {**node.data.params}
op = catalog.get(node.data.title)
if not op:
node.publish_error("Operation not found in catalog")
return
node.publish_started()
# TODO: Handle multi-inputs.
input_map = {
edge.targetHandle: outputs[edge.source, edge.sourceHandle]
for edge in ws.edges
if edge.target == node.id
}
# Convert inputs types to match operation signature.
try:
inputs = []
missing = []
for p in op.inputs:
if p.name not in input_map:
opt_type = ops.get_optional_type(p.type)
if opt_type is not None:
inputs.append(None)
else:
missing.append(p.name)
continue
x = input_map[p.name]
if p.type == nx.Graph:
if isinstance(x, Bundle):
x = x.to_nx()
assert isinstance(x, nx.Graph), f"Input must be a graph. Got: {x}"
elif p.type == Bundle:
if isinstance(x, nx.Graph):
x = Bundle.from_nx(x)
elif isinstance(x, pd.DataFrame):
x = Bundle.from_df(x)
assert isinstance(x, Bundle), f"Input must be a graph or dataframe. Got: {x}"
inputs.append(x)
except Exception as e:
if not os.environ.get("LYNXKITE_SUPPRESS_OP_ERRORS"):
traceback.print_exc()
node.publish_error(e)
return
if missing:
node.publish_error(f"Missing input: {', '.join(missing)}")
return
# Execute op.
try:
result = op(*inputs, **params)
result.output = await await_if_needed(result.output)
result.display = await await_if_needed(result.display)
except Exception as e:
if not os.environ.get("LYNXKITE_SUPPRESS_OP_ERRORS"):
traceback.print_exc()
result = ops.Result(error=str(e))
result.input_metadata = [_get_metadata(i) for i in inputs]
if isinstance(result.output, dict):
for k, v in result.output.items():
outputs[node.id, k] = v
elif result.output is not None:
[k] = op.outputs
outputs[node.id, k.name] = result.output
node.publish_result(result)
def _get_metadata(x):
if hasattr(x, "metadata"):
return x.metadata()
return {}
def df_for_frontend(df: pd.DataFrame, limit: int) -> pd.DataFrame:
"""Returns a DataFrame with values that are safe to send to the frontend."""
df = df[:limit]
if isinstance(df, pl.LazyFrame):
df = df.collect()
if isinstance(df, pl.DataFrame):
df = df.to_pandas()
# Convert non-numeric columns to strings.
for c in df.columns:
if not pd.api.types.is_numeric_dtype(df[c]):
df[c] = df[c].astype(str)
return df