open-notebooklm / app.py
m-ric's picture
m-ric HF Staff
Update app.py
886bd4b verified
raw
history blame
6.11 kB
import queue
import threading
import spaces
import os
import gradio as gr
from dia.model import Dia
from huggingface_hub import InferenceClient
import numpy as np
from transformers import set_seed
# Hardcoded podcast subject
PODCAST_SUBJECT = "The future of AI and its impact on society"
# Initialize the inference client
client = InferenceClient("meta-llama/Llama-3.3-70B-Instruct", provider="cerebras", token=os.getenv("HF_TOKEN"))
model = Dia.from_pretrained("nari-labs/Dia-1.6B", compute_dtype="float32")
# Queue for audio streaming
audio_queue = queue.Queue()
stop_signal = threading.Event()
def generate_podcast_text(subject):
prompt = f"""Generate a podcast told by 2 hosts about {subject}.
The podcast should be an insightful discussion, with some amount of playful banter.
Separate dialog as follows using [S1] for the male host and [S2] for the female host, for instance:
[S1] Hello, how are you?
[S2] I'm good, thank you. How are you?
[S1] I'm good, thank you. (laughs)
[S2] Great.
Now go on, make 5 minutes of podcast.
"""
response = client.chat_completion([{"role": "user", "content": prompt}], max_tokens=1000)
return response.choices[0].message.content
def split_podcast_into_chunks(podcast_text, chunk_size=3):
lines = podcast_text.strip().split("\n")
chunks = []
for i in range(0, len(lines), chunk_size):
chunk = "\n".join(lines[i : i + chunk_size])
chunks.append(chunk)
return chunks
def postprocess_audio(output_audio_np, speed_factor: float=0.94):
"""Taken from https://huggingface.co/spaces/nari-labs/Dia-1.6B/blob/main/app.py"""
# Get sample rate from the loaded DAC model
output_sr = 44100
# --- Slow down audio ---
original_len = len(output_audio_np)
# Ensure speed_factor is positive and not excessively small/large to avoid issues
speed_factor = max(0.1, min(speed_factor, 5.0))
target_len = int(
original_len / speed_factor
) # Target length based on speed_factor
if (
target_len != original_len and target_len > 0
): # Only interpolate if length changes and is valid
x_original = np.arange(original_len)
x_resampled = np.linspace(0, original_len - 1, target_len)
resampled_audio_np = np.interp(x_resampled, x_original, output_audio_np)
output_audio = (
output_sr,
resampled_audio_np.astype(np.float32),
) # Use resampled audio
print(
f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed."
)
else:
output_audio = (
output_sr,
output_audio_np,
) # Keep original if calculation fails or no change
print(f"Skipping audio speed adjustment (factor: {speed_factor:.2f}).")
# --- End slowdown ---
print(
f"Audio conversion successful. Final shape: {output_audio[1].shape}, Sample Rate: {output_sr}"
)
# Explicitly convert to int16 to prevent Gradio warning
if (
output_audio[1].dtype == np.float32
or output_audio[1].dtype == np.float64
):
audio_for_gradio = np.clip(output_audio[1], -1.0, 1.0)
audio_for_gradio = (audio_for_gradio * 32767).astype(np.int16)
output_audio = (output_sr, audio_for_gradio)
print("Converted audio to int16 for Gradio output.")
return output_audio
@spaces.GPU
def process_audio_chunks(podcast_text):
chunks = split_podcast_into_chunks(podcast_text)
sample_rate = 44100 # Modified from https://huggingface.co/spaces/nari-labs/Dia-1.6B/blob/main/app.py has 44100
for chunk in chunks:
if stop_signal.is_set():
break
set_seed(42)
raw_audio = model.generate(
chunk,
use_torch_compile=False,
verbose=False,
temperature=1.3
top_p=0.95
)
audio_chunk_np = np.array(raw_audio, dtype=np.float32)
audio_queue.put(postprocess_audio(audio_chunk_np))
audio_queue.put(None)
def stream_audio_generator(podcast_text):
"""Creates a generator that yields audio chunks for streaming"""
stop_signal.clear()
# Start audio generation in a separate thread
gen_thread = threading.Thread(target=process_audio_chunks, args=(podcast_text,))
gen_thread.start()
try:
while True:
# Get next chunk from queue
chunk = audio_queue.get()
# None signals end of generation
if chunk is None:
break
# Yield the audio chunk with sample rate
yield chunk
except Exception as e:
print(f"Error in streaming: {e}")
def stop_generation():
stop_signal.set()
return "Generation stopped"
def generate_podcast():
podcast_text = generate_podcast_text(PODCAST_SUBJECT)
return podcast_text
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# NotebookLM Podcast Generator")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(f"## Current Topic: {PODCAST_SUBJECT}")
gr.Markdown("This app generates a podcast discussion between two hosts about the specified topic.")
generate_btn = gr.Button("Generate Podcast Script", variant="primary")
podcast_output = gr.Textbox(label="Generated Podcast Script", lines=15)
gr.Markdown("## Audio Preview")
gr.Markdown("Click below to hear the podcast with realistic voices:")
with gr.Row():
start_audio_btn = gr.Button("▶️ Generate Podcast", variant="secondary")
stop_btn = gr.Button("⏹️ Stop", variant="stop")
audio_output = gr.Audio(label="Podcast Audio", streaming=True)
status_text = gr.Textbox(label="Status", visible=True)
generate_btn.click(fn=generate_podcast, outputs=podcast_output)
start_audio_btn.click(fn=stream_audio_generator, inputs=podcast_output, outputs=audio_output)
stop_btn.click(fn=stop_generation, outputs=status_text)
if __name__ == "__main__":
demo.queue().launch()