Spaces:
Sleeping
Sleeping
Create transformer_1d.py
Browse files
tsr/models/transformer/transformer_1d.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
#
|
15 |
+
# --------
|
16 |
+
#
|
17 |
+
# Modified 2024 by the Tripo AI and Stability AI Team.
|
18 |
+
#
|
19 |
+
# Copyright (c) 2024 Tripo AI & Stability AI
|
20 |
+
#
|
21 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
22 |
+
# of this software and associated documentation files (the "Software"), to deal
|
23 |
+
# in the Software without restriction, including without limitation the rights
|
24 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
25 |
+
# copies of the Software, and to permit persons to whom the Software is
|
26 |
+
# furnished to do so, subject to the following conditions:
|
27 |
+
#
|
28 |
+
# The above copyright notice and this permission notice shall be included in all
|
29 |
+
# copies or substantial portions of the Software.
|
30 |
+
#
|
31 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
32 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
33 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
34 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
35 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
36 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
37 |
+
# SOFTWARE.
|
38 |
+
|
39 |
+
from dataclasses import dataclass
|
40 |
+
from typing import Optional
|
41 |
+
|
42 |
+
import torch
|
43 |
+
import torch.nn.functional as F
|
44 |
+
from torch import nn
|
45 |
+
|
46 |
+
from ...utils import BaseModule
|
47 |
+
from .basic_transformer_block import BasicTransformerBlock
|
48 |
+
|
49 |
+
|
50 |
+
class Transformer1D(BaseModule):
|
51 |
+
@dataclass
|
52 |
+
class Config(BaseModule.Config):
|
53 |
+
num_attention_heads: int = 16
|
54 |
+
attention_head_dim: int = 88
|
55 |
+
in_channels: Optional[int] = None
|
56 |
+
out_channels: Optional[int] = None
|
57 |
+
num_layers: int = 1
|
58 |
+
dropout: float = 0.0
|
59 |
+
norm_num_groups: int = 32
|
60 |
+
cross_attention_dim: Optional[int] = None
|
61 |
+
attention_bias: bool = False
|
62 |
+
activation_fn: str = "geglu"
|
63 |
+
only_cross_attention: bool = False
|
64 |
+
double_self_attention: bool = False
|
65 |
+
upcast_attention: bool = False
|
66 |
+
norm_type: str = "layer_norm"
|
67 |
+
norm_elementwise_affine: bool = True
|
68 |
+
gradient_checkpointing: bool = False
|
69 |
+
|
70 |
+
cfg: Config
|
71 |
+
|
72 |
+
def configure(self) -> None:
|
73 |
+
self.num_attention_heads = self.cfg.num_attention_heads
|
74 |
+
self.attention_head_dim = self.cfg.attention_head_dim
|
75 |
+
inner_dim = self.num_attention_heads * self.attention_head_dim
|
76 |
+
|
77 |
+
linear_cls = nn.Linear
|
78 |
+
|
79 |
+
# 2. Define input layers
|
80 |
+
self.in_channels = self.cfg.in_channels
|
81 |
+
|
82 |
+
self.norm = torch.nn.GroupNorm(
|
83 |
+
num_groups=self.cfg.norm_num_groups,
|
84 |
+
num_channels=self.cfg.in_channels,
|
85 |
+
eps=1e-6,
|
86 |
+
affine=True,
|
87 |
+
)
|
88 |
+
self.proj_in = linear_cls(self.cfg.in_channels, inner_dim)
|
89 |
+
|
90 |
+
# 3. Define transformers blocks
|
91 |
+
self.transformer_blocks = nn.ModuleList(
|
92 |
+
[
|
93 |
+
BasicTransformerBlock(
|
94 |
+
inner_dim,
|
95 |
+
self.num_attention_heads,
|
96 |
+
self.attention_head_dim,
|
97 |
+
dropout=self.cfg.dropout,
|
98 |
+
cross_attention_dim=self.cfg.cross_attention_dim,
|
99 |
+
activation_fn=self.cfg.activation_fn,
|
100 |
+
attention_bias=self.cfg.attention_bias,
|
101 |
+
only_cross_attention=self.cfg.only_cross_attention,
|
102 |
+
double_self_attention=self.cfg.double_self_attention,
|
103 |
+
upcast_attention=self.cfg.upcast_attention,
|
104 |
+
norm_type=self.cfg.norm_type,
|
105 |
+
norm_elementwise_affine=self.cfg.norm_elementwise_affine,
|
106 |
+
)
|
107 |
+
for d in range(self.cfg.num_layers)
|
108 |
+
]
|
109 |
+
)
|
110 |
+
|
111 |
+
# 4. Define output layers
|
112 |
+
self.out_channels = (
|
113 |
+
self.cfg.in_channels
|
114 |
+
if self.cfg.out_channels is None
|
115 |
+
else self.cfg.out_channels
|
116 |
+
)
|
117 |
+
|
118 |
+
self.proj_out = linear_cls(inner_dim, self.cfg.in_channels)
|
119 |
+
|
120 |
+
self.gradient_checkpointing = self.cfg.gradient_checkpointing
|
121 |
+
|
122 |
+
def forward(
|
123 |
+
self,
|
124 |
+
hidden_states: torch.Tensor,
|
125 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
126 |
+
attention_mask: Optional[torch.Tensor] = None,
|
127 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
128 |
+
):
|
129 |
+
"""
|
130 |
+
The [`Transformer1DModel`] forward method.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
134 |
+
Input `hidden_states`.
|
135 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
136 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
137 |
+
self-attention.
|
138 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
139 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
140 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
141 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
142 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
143 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
144 |
+
|
145 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
146 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
147 |
+
|
148 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
149 |
+
above. This bias will be added to the cross-attention scores.
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
torch.FloatTensor
|
153 |
+
"""
|
154 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
155 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
156 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
157 |
+
# expects mask of shape:
|
158 |
+
# [batch, key_tokens]
|
159 |
+
# adds singleton query_tokens dimension:
|
160 |
+
# [batch, 1, key_tokens]
|
161 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
162 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
163 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
164 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
165 |
+
# assume that mask is expressed as:
|
166 |
+
# (1 = keep, 0 = discard)
|
167 |
+
# convert mask into a bias that can be added to attention scores:
|
168 |
+
# (keep = +0, discard = -10000.0)
|
169 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
170 |
+
attention_mask = attention_mask.unsqueeze(1)
|
171 |
+
|
172 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
173 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
174 |
+
encoder_attention_mask = (
|
175 |
+
1 - encoder_attention_mask.to(hidden_states.dtype)
|
176 |
+
) * -10000.0
|
177 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
178 |
+
|
179 |
+
# 1. Input
|
180 |
+
batch, _, seq_len = hidden_states.shape
|
181 |
+
residual = hidden_states
|
182 |
+
|
183 |
+
hidden_states = self.norm(hidden_states)
|
184 |
+
inner_dim = hidden_states.shape[1]
|
185 |
+
hidden_states = hidden_states.permute(0, 2, 1).reshape(
|
186 |
+
batch, seq_len, inner_dim
|
187 |
+
)
|
188 |
+
hidden_states = self.proj_in(hidden_states)
|
189 |
+
|
190 |
+
# 2. Blocks
|
191 |
+
for block in self.transformer_blocks:
|
192 |
+
if self.training and self.gradient_checkpointing:
|
193 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
194 |
+
block,
|
195 |
+
hidden_states,
|
196 |
+
attention_mask,
|
197 |
+
encoder_hidden_states,
|
198 |
+
encoder_attention_mask,
|
199 |
+
use_reentrant=False,
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
hidden_states = block(
|
203 |
+
hidden_states,
|
204 |
+
attention_mask=attention_mask,
|
205 |
+
encoder_hidden_states=encoder_hidden_states,
|
206 |
+
encoder_attention_mask=encoder_attention_mask,
|
207 |
+
)
|
208 |
+
|
209 |
+
# 3. Output
|
210 |
+
hidden_states = self.proj_out(hidden_states)
|
211 |
+
hidden_states = (
|
212 |
+
hidden_states.reshape(batch, seq_len, inner_dim)
|
213 |
+
.permute(0, 2, 1)
|
214 |
+
.contiguous()
|
215 |
+
)
|
216 |
+
|
217 |
+
output = hidden_states + residual
|
218 |
+
|
219 |
+
return output
|