Spaces:
Sleeping
Sleeping
Create basic_transformer_block.py
Browse files
tsr/models/transformer/basic_transformer_block.py
ADDED
|
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
#
|
| 15 |
+
# --------
|
| 16 |
+
#
|
| 17 |
+
# Modified 2024 by the Tripo AI and Stability AI Team.
|
| 18 |
+
#
|
| 19 |
+
# Copyright (c) 2024 Tripo AI & Stability AI
|
| 20 |
+
#
|
| 21 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 22 |
+
# of this software and associated documentation files (the "Software"), to deal
|
| 23 |
+
# in the Software without restriction, including without limitation the rights
|
| 24 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 25 |
+
# copies of the Software, and to permit persons to whom the Software is
|
| 26 |
+
# furnished to do so, subject to the following conditions:
|
| 27 |
+
#
|
| 28 |
+
# The above copyright notice and this permission notice shall be included in all
|
| 29 |
+
# copies or substantial portions of the Software.
|
| 30 |
+
#
|
| 31 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 32 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 33 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 34 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 35 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 36 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 37 |
+
# SOFTWARE.
|
| 38 |
+
|
| 39 |
+
from typing import Optional
|
| 40 |
+
|
| 41 |
+
import torch
|
| 42 |
+
import torch.nn.functional as F
|
| 43 |
+
from torch import nn
|
| 44 |
+
|
| 45 |
+
from .attention import Attention
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class BasicTransformerBlock(nn.Module):
|
| 49 |
+
r"""
|
| 50 |
+
A basic Transformer block.
|
| 51 |
+
|
| 52 |
+
Parameters:
|
| 53 |
+
dim (`int`): The number of channels in the input and output.
|
| 54 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 55 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 56 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 57 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
| 58 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 59 |
+
attention_bias (:
|
| 60 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
| 61 |
+
only_cross_attention (`bool`, *optional*):
|
| 62 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
| 63 |
+
double_self_attention (`bool`, *optional*):
|
| 64 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
| 65 |
+
upcast_attention (`bool`, *optional*):
|
| 66 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
| 67 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
| 68 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
| 69 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
| 70 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
| 71 |
+
final_dropout (`bool` *optional*, defaults to False):
|
| 72 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
| 73 |
+
"""
|
| 74 |
+
|
| 75 |
+
def __init__(
|
| 76 |
+
self,
|
| 77 |
+
dim: int,
|
| 78 |
+
num_attention_heads: int,
|
| 79 |
+
attention_head_dim: int,
|
| 80 |
+
dropout=0.0,
|
| 81 |
+
cross_attention_dim: Optional[int] = None,
|
| 82 |
+
activation_fn: str = "geglu",
|
| 83 |
+
attention_bias: bool = False,
|
| 84 |
+
only_cross_attention: bool = False,
|
| 85 |
+
double_self_attention: bool = False,
|
| 86 |
+
upcast_attention: bool = False,
|
| 87 |
+
norm_elementwise_affine: bool = True,
|
| 88 |
+
norm_type: str = "layer_norm",
|
| 89 |
+
final_dropout: bool = False,
|
| 90 |
+
):
|
| 91 |
+
super().__init__()
|
| 92 |
+
self.only_cross_attention = only_cross_attention
|
| 93 |
+
|
| 94 |
+
assert norm_type == "layer_norm"
|
| 95 |
+
|
| 96 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
| 97 |
+
# 1. Self-Attn
|
| 98 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
| 99 |
+
self.attn1 = Attention(
|
| 100 |
+
query_dim=dim,
|
| 101 |
+
heads=num_attention_heads,
|
| 102 |
+
dim_head=attention_head_dim,
|
| 103 |
+
dropout=dropout,
|
| 104 |
+
bias=attention_bias,
|
| 105 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
| 106 |
+
upcast_attention=upcast_attention,
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
# 2. Cross-Attn
|
| 110 |
+
if cross_attention_dim is not None or double_self_attention:
|
| 111 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
| 112 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
| 113 |
+
# the second cross attention block.
|
| 114 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
| 115 |
+
|
| 116 |
+
self.attn2 = Attention(
|
| 117 |
+
query_dim=dim,
|
| 118 |
+
cross_attention_dim=(
|
| 119 |
+
cross_attention_dim if not double_self_attention else None
|
| 120 |
+
),
|
| 121 |
+
heads=num_attention_heads,
|
| 122 |
+
dim_head=attention_head_dim,
|
| 123 |
+
dropout=dropout,
|
| 124 |
+
bias=attention_bias,
|
| 125 |
+
upcast_attention=upcast_attention,
|
| 126 |
+
) # is self-attn if encoder_hidden_states is none
|
| 127 |
+
else:
|
| 128 |
+
self.norm2 = None
|
| 129 |
+
self.attn2 = None
|
| 130 |
+
|
| 131 |
+
# 3. Feed-forward
|
| 132 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
| 133 |
+
self.ff = FeedForward(
|
| 134 |
+
dim,
|
| 135 |
+
dropout=dropout,
|
| 136 |
+
activation_fn=activation_fn,
|
| 137 |
+
final_dropout=final_dropout,
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# let chunk size default to None
|
| 141 |
+
self._chunk_size = None
|
| 142 |
+
self._chunk_dim = 0
|
| 143 |
+
|
| 144 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
| 145 |
+
# Sets chunk feed-forward
|
| 146 |
+
self._chunk_size = chunk_size
|
| 147 |
+
self._chunk_dim = dim
|
| 148 |
+
|
| 149 |
+
def forward(
|
| 150 |
+
self,
|
| 151 |
+
hidden_states: torch.FloatTensor,
|
| 152 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 153 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
| 154 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 155 |
+
) -> torch.FloatTensor:
|
| 156 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
| 157 |
+
# 0. Self-Attention
|
| 158 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 159 |
+
|
| 160 |
+
attn_output = self.attn1(
|
| 161 |
+
norm_hidden_states,
|
| 162 |
+
encoder_hidden_states=(
|
| 163 |
+
encoder_hidden_states if self.only_cross_attention else None
|
| 164 |
+
),
|
| 165 |
+
attention_mask=attention_mask,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
hidden_states = attn_output + hidden_states
|
| 169 |
+
|
| 170 |
+
# 3. Cross-Attention
|
| 171 |
+
if self.attn2 is not None:
|
| 172 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 173 |
+
|
| 174 |
+
attn_output = self.attn2(
|
| 175 |
+
norm_hidden_states,
|
| 176 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 177 |
+
attention_mask=encoder_attention_mask,
|
| 178 |
+
)
|
| 179 |
+
hidden_states = attn_output + hidden_states
|
| 180 |
+
|
| 181 |
+
# 4. Feed-forward
|
| 182 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 183 |
+
|
| 184 |
+
if self._chunk_size is not None:
|
| 185 |
+
# "feed_forward_chunk_size" can be used to save memory
|
| 186 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
| 187 |
+
raise ValueError(
|
| 188 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
| 192 |
+
ff_output = torch.cat(
|
| 193 |
+
[
|
| 194 |
+
self.ff(hid_slice)
|
| 195 |
+
for hid_slice in norm_hidden_states.chunk(
|
| 196 |
+
num_chunks, dim=self._chunk_dim
|
| 197 |
+
)
|
| 198 |
+
],
|
| 199 |
+
dim=self._chunk_dim,
|
| 200 |
+
)
|
| 201 |
+
else:
|
| 202 |
+
ff_output = self.ff(norm_hidden_states)
|
| 203 |
+
|
| 204 |
+
hidden_states = ff_output + hidden_states
|
| 205 |
+
|
| 206 |
+
return hidden_states
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
class FeedForward(nn.Module):
|
| 210 |
+
r"""
|
| 211 |
+
A feed-forward layer.
|
| 212 |
+
|
| 213 |
+
Parameters:
|
| 214 |
+
dim (`int`): The number of channels in the input.
|
| 215 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
| 216 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
| 217 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
| 218 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
| 219 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
| 220 |
+
"""
|
| 221 |
+
|
| 222 |
+
def __init__(
|
| 223 |
+
self,
|
| 224 |
+
dim: int,
|
| 225 |
+
dim_out: Optional[int] = None,
|
| 226 |
+
mult: int = 4,
|
| 227 |
+
dropout: float = 0.0,
|
| 228 |
+
activation_fn: str = "geglu",
|
| 229 |
+
final_dropout: bool = False,
|
| 230 |
+
):
|
| 231 |
+
super().__init__()
|
| 232 |
+
inner_dim = int(dim * mult)
|
| 233 |
+
dim_out = dim_out if dim_out is not None else dim
|
| 234 |
+
linear_cls = nn.Linear
|
| 235 |
+
|
| 236 |
+
if activation_fn == "gelu":
|
| 237 |
+
act_fn = GELU(dim, inner_dim)
|
| 238 |
+
if activation_fn == "gelu-approximate":
|
| 239 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
| 240 |
+
elif activation_fn == "geglu":
|
| 241 |
+
act_fn = GEGLU(dim, inner_dim)
|
| 242 |
+
elif activation_fn == "geglu-approximate":
|
| 243 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
| 244 |
+
|
| 245 |
+
self.net = nn.ModuleList([])
|
| 246 |
+
# project in
|
| 247 |
+
self.net.append(act_fn)
|
| 248 |
+
# project dropout
|
| 249 |
+
self.net.append(nn.Dropout(dropout))
|
| 250 |
+
# project out
|
| 251 |
+
self.net.append(linear_cls(inner_dim, dim_out))
|
| 252 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
| 253 |
+
if final_dropout:
|
| 254 |
+
self.net.append(nn.Dropout(dropout))
|
| 255 |
+
|
| 256 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 257 |
+
for module in self.net:
|
| 258 |
+
hidden_states = module(hidden_states)
|
| 259 |
+
return hidden_states
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
class GELU(nn.Module):
|
| 263 |
+
r"""
|
| 264 |
+
GELU activation function with tanh approximation support with `approximate="tanh"`.
|
| 265 |
+
|
| 266 |
+
Parameters:
|
| 267 |
+
dim_in (`int`): The number of channels in the input.
|
| 268 |
+
dim_out (`int`): The number of channels in the output.
|
| 269 |
+
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
|
| 270 |
+
"""
|
| 271 |
+
|
| 272 |
+
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
|
| 273 |
+
super().__init__()
|
| 274 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
| 275 |
+
self.approximate = approximate
|
| 276 |
+
|
| 277 |
+
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
| 278 |
+
if gate.device.type != "mps":
|
| 279 |
+
return F.gelu(gate, approximate=self.approximate)
|
| 280 |
+
# mps: gelu is not implemented for float16
|
| 281 |
+
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(
|
| 282 |
+
dtype=gate.dtype
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
def forward(self, hidden_states):
|
| 286 |
+
hidden_states = self.proj(hidden_states)
|
| 287 |
+
hidden_states = self.gelu(hidden_states)
|
| 288 |
+
return hidden_states
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
class GEGLU(nn.Module):
|
| 292 |
+
r"""
|
| 293 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
| 294 |
+
|
| 295 |
+
Parameters:
|
| 296 |
+
dim_in (`int`): The number of channels in the input.
|
| 297 |
+
dim_out (`int`): The number of channels in the output.
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
def __init__(self, dim_in: int, dim_out: int):
|
| 301 |
+
super().__init__()
|
| 302 |
+
linear_cls = nn.Linear
|
| 303 |
+
|
| 304 |
+
self.proj = linear_cls(dim_in, dim_out * 2)
|
| 305 |
+
|
| 306 |
+
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
| 307 |
+
if gate.device.type != "mps":
|
| 308 |
+
return F.gelu(gate)
|
| 309 |
+
# mps: gelu is not implemented for float16
|
| 310 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
| 311 |
+
|
| 312 |
+
def forward(self, hidden_states, scale: float = 1.0):
|
| 313 |
+
args = ()
|
| 314 |
+
hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
|
| 315 |
+
return hidden_states * self.gelu(gate)
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class ApproximateGELU(nn.Module):
|
| 319 |
+
r"""
|
| 320 |
+
The approximate form of Gaussian Error Linear Unit (GELU). For more details, see section 2:
|
| 321 |
+
https://arxiv.org/abs/1606.08415.
|
| 322 |
+
|
| 323 |
+
Parameters:
|
| 324 |
+
dim_in (`int`): The number of channels in the input.
|
| 325 |
+
dim_out (`int`): The number of channels in the output.
|
| 326 |
+
"""
|
| 327 |
+
|
| 328 |
+
def __init__(self, dim_in: int, dim_out: int):
|
| 329 |
+
super().__init__()
|
| 330 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
| 331 |
+
|
| 332 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 333 |
+
x = self.proj(x)
|
| 334 |
+
return x * torch.sigmoid(1.702 * x)
|