File size: 11,308 Bytes
8166792 661e202 00ab2e7 8dda9f5 c5c62a8 8166792 661e202 8166792 f407854 2f27314 f407854 2f27314 f407854 2f27314 f407854 2f27314 8166792 c5c62a8 8166792 55bd8a1 2f27314 f407854 2f27314 f407854 55bd8a1 2f27314 55bd8a1 2f27314 55bd8a1 661e202 2f27314 c5c62a8 661e202 f407854 661e202 8166792 c5c62a8 8166792 f407854 c5c62a8 f407854 8166792 f407854 8166792 f407854 8166792 c5c62a8 661e202 8dda9f5 2f27314 661e202 8166792 8dda9f5 8166792 2f27314 c5c62a8 2f27314 c5c62a8 2f27314 c5c62a8 2f27314 c5c62a8 2f27314 c5c62a8 2f27314 8166792 00ab2e7 8166792 661e202 8166792 661e202 00ab2e7 8166792 00ab2e7 8166792 00ab2e7 8166792 661e202 00ab2e7 661e202 8166792 00ab2e7 661e202 8166792 00ab2e7 8166792 00ab2e7 8166792 661e202 8166792 661e202 00ab2e7 8166792 00ab2e7 8166792 f407854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import cv2
import gradio as gr
import numpy as np
import os
import utils
import plotly.graph_objects as go
import spaces
import torch
from image_segmenter import ImageSegmenter
from monocular_depth_estimator import MonocularDepthEstimator
from point_cloud_generator import display_pcd
# params
CANCEL_PROCESSING = False
# Initialize classes without loading models
img_seg = None
depth_estimator = None
def initialize_models():
"""Loads models onto GPU if available, otherwise falls back to CPU."""
global img_seg, depth_estimator
device = "cuda" if torch.cuda.is_available() else "cpu"
if img_seg is None:
print(f"๐น Loading ImageSegmenter model on {device}...")
img_seg = ImageSegmenter(model_type="yolov8s-seg", device=device)
if depth_estimator is None:
print(f"๐น Loading Depth Estimator model on {device}...")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256", device=device)
def safe_gpu_decorator(func):
"""Custom decorator to handle GPU operations safely"""
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except RuntimeError as e:
if "cudaGetDeviceCount" in str(e):
print("GPU initialization failed, falling back to CPU")
# Set environment variable to force CPU
os.environ['CUDA_VISIBLE_DEVICES'] = ''
return func(*args, **kwargs)
raise
return wrapper
@safe_gpu_decorator
def process_image(image):
try:
print("๐ Starting image processing...")
initialize_models()
if torch.cuda.is_available():
print("โ
Using GPU for processing")
torch.set_default_tensor_type(torch.cuda.FloatTensor)
else:
print("โ ๏ธ Using CPU for processing")
# Process image
image = utils.resize(image)
image_segmentation, objects_data = img_seg.predict(image)
depthmap, depth_colormap = depth_estimator.make_prediction(image)
dist_image = utils.draw_depth_info(image, depthmap, objects_data)
objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
plot_fig = display_pcd(objs_pcd)
return image_segmentation, depth_colormap, dist_image, plot_fig
except RuntimeError as e:
print(f"๐จ RuntimeError in process_image: {e}")
if "cuda" in str(e).lower():
print("โ ๏ธ CUDA error detected. Switching to CPU mode.")
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import traceback
print(traceback.format_exc())
raise
@safe_gpu_decorator
def test_process_img(image):
initialize_models()
image = utils.resize(image)
image_segmentation, objects_data = img_seg.predict(image)
depthmap, depth_colormap = depth_estimator.make_prediction(image)
return image_segmentation, objects_data, depthmap, depth_colormap
@safe_gpu_decorator
def process_video(vid_path=None):
try:
initialize_models()
vid_cap = cv2.VideoCapture(vid_path)
while vid_cap.isOpened():
ret, frame = vid_cap.read()
if ret:
print("making predictions ....")
frame = utils.resize(frame)
image_segmentation, objects_data = img_seg.predict(frame)
depthmap, depth_colormap = depth_estimator.make_prediction(frame)
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
vid_cap.release()
return None
except Exception as e:
print(f"Error in process_video: {str(e)}")
import traceback
print(traceback.format_exc())
raise
def update_segmentation_options(options):
initialize_models()
img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False
def update_confidence_threshold(thres_val):
initialize_models()
img_seg.confidence_threshold = thres_val/100
@safe_gpu_decorator
def model_selector(model_type):
global img_seg, depth_estimator
device = "cuda" if torch.cuda.is_available() else "cpu"
model_dict = {
"Small - Better performance and less accuracy": ("midas_v21_small_256", "yolov8s-seg"),
"Medium - Balanced performance and accuracy": ("dpt_hybrid_384", "yolov8m-seg"),
"Large - Slow performance and high accuracy": ("dpt_large_384", "yolov8l-seg"),
}
midas_model, yolo_model = model_dict.get(model_type, ("midas_v21_small_256", "yolov8s-seg"))
print(f"๐น Switching to models: YOLO={yolo_model}, MiDaS={midas_model} on {device}")
img_seg = ImageSegmenter(model_type=yolo_model, device=device)
depth_estimator = MonocularDepthEstimator(model_type=midas_model, device=device)
def cancel():
global CANCEL_PROCESSING
CANCEL_PROCESSING = True
if __name__ == "__main__":
# Ensure CUDA is properly initialized
try:
if torch.cuda.is_available():
print(f"โ
CUDA is available: {torch.cuda.get_device_name(0)}")
device = torch.device("cuda")
torch.cuda.empty_cache() # Clear GPU cache
else:
print("โ No CUDA available. Falling back to CPU.")
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
device = torch.device("cpu")
except RuntimeError as e:
print(f"๐จ CUDA initialization failed: {e}. Switching to CPU mode.")
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
device = torch.device("cpu")
with gr.Blocks() as my_app:
# title
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
gr.Markdown("<h3><center>This model estimates the depth of segmented objects.</center></h3>")
# tabs
with gr.Tab("Image"):
with gr.Row():
with gr.Column(scale=1):
img_input = gr.Image()
model_type_img = gr.Dropdown(
["Small - Better performance and less accuracy",
"Medium - Balanced performance and accuracy",
"Large - Slow performance and high accuracy"],
label="Model Type", value="Small - Better performance and less accuracy",
info="Select the inference model before running predictions!")
options_checkbox_img = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
conf_thres_img = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
submit_btn_img = gr.Button(value="Predict")
with gr.Column(scale=2):
with gr.Row():
segmentation_img_output = gr.Image(height=300, label="Segmentation")
depth_img_output = gr.Image(height=300, label="Depth Estimation")
with gr.Row():
dist_img_output = gr.Image(height=300, label="Distance")
pcd_img_output = gr.Plot(label="Point Cloud")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
os.path.join(os.path.dirname(__file__), "assets/images/soccer.jpg"),
os.path.join(os.path.dirname(__file__), "assets/images/room_2.png"),
os.path.join(os.path.dirname(__file__), "assets/images/living_room.jpg")],
inputs=img_input,
outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output],
fn=process_image,
cache_examples=True,
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column(scale=1):
vid_input = gr.Video()
model_type_vid = gr.Dropdown(
["Small - Better performance and less accuracy",
"Medium - Balanced performance and accuracy",
"Large - Slow performance and high accuracy"],
label="Model Type", value="Small - Better performance and less accuracy",
info="Select the inference model before running predictions!")
options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
with gr.Row():
cancel_btn = gr.Button(value="Cancel")
submit_btn_vid = gr.Button(value="Predict")
with gr.Column(scale=2):
with gr.Row():
segmentation_vid_output = gr.Image(height=300, label="Segmentation")
depth_vid_output = gr.Image(height=300, label="Depth Estimation")
with gr.Row():
dist_vid_output = gr.Image(height=300, label="Distance")
gr.Examples(
examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
inputs=vid_input,
)
# image tab logic
submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
model_type_img.change(model_selector, model_type_img, [])
# video tab logic
submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
model_type_vid.change(model_selector, model_type_vid, [])
cancel_btn.click(cancel, inputs=[], outputs=[])
options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])
my_app.queue(max_size=10).launch() |