File size: 10,455 Bytes
b4b1c15
8166792
 
 
 
b4b1c15
661e202
00ab2e7
8166792
 
 
661e202
8166792
6ea8a1f
f796a73
8569624
512f124
8569624
 
512f124
8569624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a68aca
6ea8a1f
 
f796a73
8166792
 
 
b4b1c15
 
2f27314
8569624
b4b1c15
8569624
 
 
 
 
 
 
 
 
2f27314
7a68aca
661e202
 
 
 
 
8166792
8569624
8166792
8569624
 
 
 
 
 
 
 
 
 
 
 
b4b1c15
8166792
7a68aca
8166792
 
 
 
 
 
 
 
7a68aca
661e202
7a68aca
2f27314
b4b1c15
 
 
 
 
 
 
 
2f27314
b4b1c15
 
661e202
8166792
 
 
 
c5c62a8
b4b1c15
 
 
 
 
 
 
 
 
2f27314
b4b1c15
 
 
 
 
 
 
 
8166792
b4b1c15
8166792
00ab2e7
 
 
8166792
 
 
 
 
 
661e202
 
 
 
 
 
8166792
 
 
 
 
 
 
 
661e202
 
 
00ab2e7
8166792
b4b1c15
8166792
00ab2e7
 
 
 
 
8166792
00ab2e7
8166792
 
 
 
 
 
 
 
661e202
 
 
 
 
00ab2e7
661e202
8166792
 
 
 
 
 
 
 
00ab2e7
 
661e202
 
 
8166792
b4b1c15
8166792
00ab2e7
 
 
 
8166792
b4b1c15
 
8166792
b4b1c15
8166792
 
00ab2e7
8166792
 
661e202
8166792
 
661e202
00ab2e7
8166792
 
00ab2e7
8166792
b4b1c15
6ea8a1f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from ultralytics import YOLO
import cv2
import gradio as gr
import numpy as np
import os
import torch
import utils
import plotly.graph_objects as go

from image_segmenter import ImageSegmenter
from monocular_depth_estimator import MonocularDepthEstimator
from point_cloud_generator import display_pcd



import spaces  # Required for ZeroGPU

# Ensure CUDA is NOT initialized before ZeroGPU assigns a device
torch.backends.cudnn.enabled = False  # Prevents CUDA errors on first GPU allocation

def initialize_gpu():
    """Ensure that ZeroGPU assigns a GPU before using CUDA"""
    global device
    try:
        with spaces.GPU():  # Ensures GPU allocation
            torch.cuda.init()
            if torch.cuda.is_available():
                device = torch.device("cuda")
                print(f"✅ GPU initialized: {torch.cuda.get_device_name(0)}")
                torch.cuda.empty_cache()  # Clear memory
            else:
                print("❌ No GPU detected after ZeroGPU allocation.")
                device = torch.device("cpu")
    except Exception as e:
        print(f"🚨 GPU initialization failed: {e}")
        device = torch.device("cpu")

# Run GPU initialization before using CUDA
initialize_gpu()




# params
CANCEL_PROCESSING = False

img_seg = ImageSegmenter(model_type="yolov8s-seg")
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")

@spaces.GPU  # Ensures GPU is allocated before running
def process_image(image):
    with spaces.GPU():  # Explicitly allocate a GPU
        image = utils.resize(image)
        image_segmentation, objects_data = img_seg.predict(image)
        depthmap, depth_colormap = depth_estimator.make_prediction(image)
        dist_image = utils.draw_depth_info(image, depthmap, objects_data)
        objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
        plot_fig = display_pcd(objs_pcd)
        return image_segmentation, depth_colormap, dist_image, plot_fig


@spaces.GPU  # Requests GPU for depth estimation
def test_process_img(image):
    image = utils.resize(image)
    image_segmentation, objects_data = img_seg.predict(image)
    depthmap, depth_colormap = depth_estimator.make_prediction(image)
    return image_segmentation, objects_data, depthmap, depth_colormap

@spaces.GPU
def process_video(vid_path=None):
    with spaces.GPU():
        vid_cap = cv2.VideoCapture(vid_path)
        while vid_cap.isOpened():
            ret, frame = vid_cap.read()
            if ret:
                print("making predictions ....")
                frame = utils.resize(frame)
                image_segmentation, objects_data = img_seg.predict(frame)
                depthmap, depth_colormap = depth_estimator.make_prediction(frame)
                dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
                yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)

    return None


def update_segmentation_options(options):
    img_seg.is_show_bounding_boxes = True if 'Show Boundary Box' in options else False
    img_seg.is_show_segmentation = True if 'Show Segmentation Region' in options else False
    img_seg.is_show_segmentation_boundary = True if 'Show Segmentation Boundary' in options else False

def update_confidence_threshold(thres_val):
    img_seg.confidence_threshold = thres_val/100

@spaces.GPU  # Ensures YOLO + MiDaS get GPU access
def model_selector(model_type):
    global img_seg, depth_estimator

    if "Small - Better performance and less accuracy" == model_type:
        midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"
    elif "Medium - Balanced performance and accuracy" == model_type:
        midas_model, yolo_model = "dpt_hybrid_384", "yolov8m-seg"
    elif "Large - Slow performance and high accuracy" == model_type:
        midas_model, yolo_model = "dpt_large_384", "yolov8l-seg"
    else:
        midas_model, yolo_model = "midas_v21_small_256", "yolov8s-seg"

    img_seg = ImageSegmenter(model_type=yolo_model)
    depth_estimator = MonocularDepthEstimator(model_type=midas_model)

def cancel():
    CANCEL_PROCESSING = True

if __name__ == "__main__":

    # testing
    # img_1 = cv2.imread("assets/images/bus.jpg")
    # img_1 = utils.resize(img_1)

    # image_segmentation, objects_data, depthmap, depth_colormap = test_process_img(img_1)
    # final_image = utils.draw_depth_info(image_segmentation, depthmap, objects_data)
    # objs_pcd = utils.generate_obj_pcd(depthmap, objects_data)
    # # print(objs_pcd[0][0])
    # display_pcd(objs_pcd, use_matplotlib=True)

    # cv2.imshow("Segmentation", image_segmentation)
    # cv2.imshow("Depth", depthmap*objects_data[2][3])
    # cv2.imshow("Final", final_image)

    # cv2.waitKey(0)
    # cv2.destroyAllWindows()

    # gradio gui app
    with gr.Blocks() as my_app:

        # title
        gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
        gr.Markdown("<h3><center>Created by Vaishanth</center></h3>")
        gr.Markdown("<h3><center>This model estimates the depth of segmented objects.</center></h3>")

        # tabs
        with gr.Tab("Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    img_input = gr.Image()
                    model_type_img = gr.Dropdown(
                        ["Small - Better performance and less accuracy", 
                         "Medium - Balanced performance and accuracy", 
                         "Large - Slow performance and high accuracy"], 
                        label="Model Type", value="Small - Better performance and less accuracy",
                        info="Select the inference model before running predictions!")
                    options_checkbox_img = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
                    conf_thres_img = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
                    submit_btn_img = gr.Button(value="Predict")                    

                with gr.Column(scale=2):
                    with gr.Row():
                        segmentation_img_output = gr.Image(height=300, label="Segmentation")
                        depth_img_output = gr.Image(height=300, label="Depth Estimation")
                    
                    with gr.Row():
                        dist_img_output = gr.Image(height=300, label="Distance")
                        pcd_img_output = gr.Plot(label="Point Cloud")
            
            gr.Markdown("## Sample Images")
            gr.Examples(
                examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
                          os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
                          os.path.join(os.path.dirname(__file__), "assets/images/soccer.jpg"),
                          os.path.join(os.path.dirname(__file__), "assets/images/room_2.png"),
                          os.path.join(os.path.dirname(__file__), "assets/images/living_room.jpg")],
                inputs=img_input,
                outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output],
                fn=process_image,
                cache_examples=True,
            )

        with gr.Tab("Video"):
            with gr.Row():
                with gr.Column(scale=1):
                    vid_input = gr.Video()
                    model_type_vid = gr.Dropdown(
                        ["Small - Better performance and less accuracy", 
                         "Medium - Balanced performance and accuracy", 
                         "Large - Slow performance and high accuracy"], 
                        label="Model Type", value="Small - Better performance and less accuracy",
                        info="Select the inference model before running predictions!")
                    
                    options_checkbox_vid = gr.CheckboxGroup(["Show Boundary Box", "Show Segmentation Region", "Show Segmentation Boundary"], label="Options")
                    conf_thres_vid = gr.Slider(1, 100, value=60, label="Confidence Threshold", info="Choose the threshold above which objects should be detected")
                    with gr.Row():
                        cancel_btn = gr.Button(value="Cancel")
                        submit_btn_vid = gr.Button(value="Predict")
            
                with gr.Column(scale=2):
                    with gr.Row():
                        segmentation_vid_output = gr.Image(height=300, label="Segmentation")
                        depth_vid_output = gr.Image(height=300, label="Depth Estimation")
                    
                    with gr.Row():
                        dist_vid_output = gr.Image(height=300, label="Distance")
            
            gr.Markdown("## Sample Videos")
            gr.Examples(
                examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
                          os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
                          os.path.join(os.path.dirname(__file__), "assets/videos/overpass.mp4"),
                          os.path.join(os.path.dirname(__file__), "assets/videos/walking.mp4")],
                inputs=vid_input,
                # outputs=vid_output,
                # fn=vid_segmenation,
            )
            

        # image tab logic
        submit_btn_img.click(process_image, inputs=img_input, outputs=[segmentation_img_output, depth_img_output, dist_img_output, pcd_img_output])
        options_checkbox_img.change(update_segmentation_options, options_checkbox_img, [])
        conf_thres_img.change(update_confidence_threshold, conf_thres_img, [])
        model_type_img.change(model_selector, model_type_img, [])

        # video tab logic
        submit_btn_vid.click(process_video, inputs=vid_input, outputs=[segmentation_vid_output, depth_vid_output, dist_vid_output])
        model_type_vid.change(model_selector, model_type_vid, [])
        cancel_btn.click(cancel, inputs=[], outputs=[])
        options_checkbox_vid.change(update_segmentation_options, options_checkbox_vid, [])
        conf_thres_vid.change(update_confidence_threshold, conf_thres_vid, [])       


    my_app.queue(max_size=20).launch()