Spaces:
Sleeping
Sleeping
update app.py
Browse files
app.py
CHANGED
|
@@ -2,108 +2,191 @@ import gradio as gr
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import pandas as pd
|
| 4 |
import joblib
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
# Load the
|
|
|
|
| 7 |
data_file = "webtraffic.csv"
|
| 8 |
-
webtraffic_data = pd.read_csv(data_file)
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
if "Datetime" not in webtraffic_data.columns:
|
| 12 |
-
print("Datetime column missing.
|
| 13 |
start_date = pd.Timestamp("2024-01-01 00:00:00")
|
| 14 |
-
webtraffic_data["Datetime"] = start_date + pd.to_timedelta(
|
| 15 |
-
webtraffic_data["Hour Index"], unit="h"
|
| 16 |
-
)
|
| 17 |
else:
|
| 18 |
webtraffic_data["Datetime"] = pd.to_datetime(webtraffic_data["Datetime"])
|
| 19 |
|
| 20 |
-
# Ensure 'Datetime' column is sorted
|
| 21 |
webtraffic_data.sort_values("Datetime", inplace=True)
|
| 22 |
|
| 23 |
-
# Load
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
"
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
with gr.Blocks() as dashboard:
|
| 93 |
-
gr.Markdown("##
|
| 94 |
-
gr.Markdown(
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
|
|
|
| 101 |
gr.Button("Generate Predictions").click(
|
| 102 |
-
fn=
|
| 103 |
inputs=[],
|
| 104 |
outputs=[plot_output, metrics_output],
|
| 105 |
)
|
| 106 |
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
if __name__ == "__main__":
|
|
|
|
| 109 |
dashboard.launch()
|
|
|
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import pandas as pd
|
| 4 |
import joblib
|
| 5 |
+
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
| 6 |
+
from math import sqrt
|
| 7 |
|
| 8 |
+
# Step 1: Load the Dataset
|
| 9 |
+
print("Loading Dataset...")
|
| 10 |
data_file = "webtraffic.csv"
|
|
|
|
| 11 |
|
| 12 |
+
try:
|
| 13 |
+
webtraffic_data = pd.read_csv(data_file)
|
| 14 |
+
print("Dataset loaded successfully!")
|
| 15 |
+
except Exception as e:
|
| 16 |
+
print(f"Error loading dataset: {e}")
|
| 17 |
+
exit()
|
| 18 |
+
|
| 19 |
+
# Step 2: Ensure 'Datetime' column exists or create it
|
| 20 |
if "Datetime" not in webtraffic_data.columns:
|
| 21 |
+
print("Datetime column missing. Creating from 'Hour Index'.")
|
| 22 |
start_date = pd.Timestamp("2024-01-01 00:00:00")
|
| 23 |
+
webtraffic_data["Datetime"] = start_date + pd.to_timedelta(webtraffic_data["Hour Index"], unit="h")
|
|
|
|
|
|
|
| 24 |
else:
|
| 25 |
webtraffic_data["Datetime"] = pd.to_datetime(webtraffic_data["Datetime"])
|
| 26 |
|
|
|
|
| 27 |
webtraffic_data.sort_values("Datetime", inplace=True)
|
| 28 |
|
| 29 |
+
# Step 3: Load SARIMA Model
|
| 30 |
+
print("Loading SARIMA Model...")
|
| 31 |
+
try:
|
| 32 |
+
sarima_model = joblib.load("sarima_model.pkl")
|
| 33 |
+
print("SARIMA model loaded successfully!")
|
| 34 |
+
except Exception as e:
|
| 35 |
+
print(f"Error loading SARIMA model: {e}")
|
| 36 |
+
exit()
|
| 37 |
+
|
| 38 |
+
# Step 4: Define Functions for Gradio Dashboard
|
| 39 |
+
future_periods = 48 # Number of hours to predict
|
| 40 |
+
|
| 41 |
+
def generate_sarima_plot():
|
| 42 |
+
"""Generate SARIMA predictions and return a detailed plot with metrics."""
|
| 43 |
+
try:
|
| 44 |
+
# Generate future dates for predictions
|
| 45 |
+
future_dates = pd.date_range(
|
| 46 |
+
start=webtraffic_data["Datetime"].iloc[-1],
|
| 47 |
+
periods=future_periods + 1,
|
| 48 |
+
freq="H"
|
| 49 |
+
)[1:]
|
| 50 |
+
|
| 51 |
+
# Generate SARIMA predictions
|
| 52 |
+
sarima_predictions = sarima_model.predict(n_periods=future_periods)
|
| 53 |
+
|
| 54 |
+
# Extract actual data for the last 'future_periods' hours
|
| 55 |
+
actual_sessions = webtraffic_data["Sessions"].iloc[-future_periods:].values
|
| 56 |
+
|
| 57 |
+
# Calculate metrics
|
| 58 |
+
mae_sarima = mean_absolute_error(actual_sessions, sarima_predictions[:len(actual_sessions)])
|
| 59 |
+
rmse_sarima = sqrt(mean_squared_error(actual_sessions, sarima_predictions[:len(actual_sessions)]))
|
| 60 |
+
|
| 61 |
+
# Combine predictions into a DataFrame for plotting
|
| 62 |
+
future_predictions = pd.DataFrame({
|
| 63 |
+
"Datetime": future_dates,
|
| 64 |
+
"SARIMA_Predicted": sarima_predictions
|
| 65 |
+
})
|
| 66 |
+
|
| 67 |
+
# Plot Actual Traffic vs SARIMA Predictions
|
| 68 |
+
plt.figure(figsize=(15, 6))
|
| 69 |
+
plt.plot(
|
| 70 |
+
webtraffic_data["Datetime"],
|
| 71 |
+
webtraffic_data["Sessions"],
|
| 72 |
+
label="Actual Traffic",
|
| 73 |
+
color="black",
|
| 74 |
+
linestyle="dotted",
|
| 75 |
+
linewidth=2,
|
| 76 |
+
)
|
| 77 |
+
plt.plot(
|
| 78 |
+
future_predictions["Datetime"],
|
| 79 |
+
future_predictions["SARIMA_Predicted"],
|
| 80 |
+
label="SARIMA Predicted",
|
| 81 |
+
color="blue",
|
| 82 |
+
linewidth=2,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
plt.title("SARIMA Predictions vs Actual Traffic", fontsize=16)
|
| 86 |
+
plt.xlabel("Datetime", fontsize=12)
|
| 87 |
+
plt.ylabel("Sessions", fontsize=12)
|
| 88 |
+
plt.legend(loc="upper left")
|
| 89 |
+
plt.grid(True)
|
| 90 |
+
plt.tight_layout()
|
| 91 |
+
|
| 92 |
+
# Save the plot
|
| 93 |
+
plot_path = "sarima_prediction_plot.png"
|
| 94 |
+
plt.savefig(plot_path)
|
| 95 |
+
plt.close()
|
| 96 |
+
|
| 97 |
+
# Return plot path and metrics
|
| 98 |
+
metrics = f"""
|
| 99 |
+
SARIMA Model Metrics:
|
| 100 |
+
- Mean Absolute Error (MAE): {mae_sarima:.2f}
|
| 101 |
+
- Root Mean Squared Error (RMSE): {rmse_sarima:.2f}
|
| 102 |
+
"""
|
| 103 |
+
return plot_path, metrics
|
| 104 |
+
|
| 105 |
+
except Exception as e:
|
| 106 |
+
print(f"Error generating SARIMA plot: {e}")
|
| 107 |
+
return None, "Error in generating output. Please check the data and model."
|
| 108 |
+
|
| 109 |
+
def generate_zoomed_plot():
|
| 110 |
+
"""Generate a zoomed-in SARIMA prediction plot."""
|
| 111 |
+
try:
|
| 112 |
+
# Generate future dates for predictions
|
| 113 |
+
future_dates = pd.date_range(
|
| 114 |
+
start=webtraffic_data["Datetime"].iloc[-1],
|
| 115 |
+
periods=future_periods + 1,
|
| 116 |
+
freq="H"
|
| 117 |
+
)[1:]
|
| 118 |
+
|
| 119 |
+
# Generate SARIMA predictions
|
| 120 |
+
sarima_predictions = sarima_model.predict(n_periods=future_periods)
|
| 121 |
+
|
| 122 |
+
# Combine predictions into a DataFrame for plotting
|
| 123 |
+
future_predictions = pd.DataFrame({
|
| 124 |
+
"Datetime": future_dates,
|
| 125 |
+
"SARIMA_Predicted": sarima_predictions
|
| 126 |
+
})
|
| 127 |
+
|
| 128 |
+
# Zoomed-in view of the plot (recent data only)
|
| 129 |
+
plt.figure(figsize=(15, 6))
|
| 130 |
+
plt.plot(
|
| 131 |
+
webtraffic_data["Datetime"].iloc[-future_periods:],
|
| 132 |
+
webtraffic_data["Sessions"].iloc[-future_periods:],
|
| 133 |
+
label="Actual Traffic (Zoomed)",
|
| 134 |
+
color="black",
|
| 135 |
+
linestyle="dotted",
|
| 136 |
+
linewidth=2,
|
| 137 |
+
)
|
| 138 |
+
plt.plot(
|
| 139 |
+
future_predictions["Datetime"],
|
| 140 |
+
future_predictions["SARIMA_Predicted"],
|
| 141 |
+
label="SARIMA Predicted (Zoomed)",
|
| 142 |
+
color="green",
|
| 143 |
+
linewidth=2,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
plt.title("Zoomed-In SARIMA Predictions vs Actual Traffic", fontsize=16)
|
| 147 |
+
plt.xlabel("Datetime", fontsize=12)
|
| 148 |
+
plt.ylabel("Sessions", fontsize=12)
|
| 149 |
+
plt.legend(loc="upper left")
|
| 150 |
+
plt.grid(True)
|
| 151 |
+
plt.tight_layout()
|
| 152 |
+
|
| 153 |
+
# Save the zoomed plot
|
| 154 |
+
zoomed_plot_path = "sarima_zoomed_plot.png"
|
| 155 |
+
plt.savefig(zoomed_plot_path)
|
| 156 |
+
plt.close()
|
| 157 |
+
|
| 158 |
+
return zoomed_plot_path
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
print(f"Error generating zoomed plot: {e}")
|
| 162 |
+
return None
|
| 163 |
+
|
| 164 |
+
# Step 5: Gradio Dashboard with Two Tiles and Metrics
|
| 165 |
with gr.Blocks() as dashboard:
|
| 166 |
+
gr.Markdown("## Enhanced SARIMA Web Traffic Prediction Dashboard")
|
| 167 |
+
gr.Markdown("This dashboard includes SARIMA predictions, performance metrics, and a zoomed-in view of recent data.")
|
| 168 |
+
|
| 169 |
+
# Outputs: Main Plot and Metrics
|
| 170 |
+
plot_output = gr.Image(label="SARIMA Prediction Plot")
|
| 171 |
+
metrics_output = gr.Textbox(label="Model Metrics", lines=6)
|
| 172 |
|
| 173 |
+
# Outputs: Zoomed Plot
|
| 174 |
+
zoomed_plot_output = gr.Image(label="Zoomed-In Prediction Plot")
|
| 175 |
|
| 176 |
+
# Button to Generate Results
|
| 177 |
gr.Button("Generate Predictions").click(
|
| 178 |
+
fn=generate_sarima_plot,
|
| 179 |
inputs=[],
|
| 180 |
outputs=[plot_output, metrics_output],
|
| 181 |
)
|
| 182 |
|
| 183 |
+
gr.Button("Generate Zoomed-In Plot").click(
|
| 184 |
+
fn=generate_zoomed_plot,
|
| 185 |
+
inputs=[],
|
| 186 |
+
outputs=[zoomed_plot_output],
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# Launch the Gradio Dashboard
|
| 190 |
if __name__ == "__main__":
|
| 191 |
+
print("\nLaunching Enhanced Gradio Dashboard...")
|
| 192 |
dashboard.launch()
|